
The Design and Analysis of a Computational

Model of Cooperative Coevolution

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

by

Mitchell A. Potter

BA, Mathematics, Florida State University, 1978

MS, Computer Science, University of Texas at Austin, 1985

Director: Kenneth A. De Jong, Associate Professor

Department of Computer Science

Spring Semester 1997

George Mason University

Fairfax, Virginia

ii

Copyright 1997 Mitchell A. Potter
All Rights Reserved

iii

DEDICATION

To Amy

iv

ACKNOWLEDGEMENTS

Throughout my doctoral studies at George Mason University, I have interacted with many
excellent faculty, staff, and students. I especially wish to acknowledge the support of my
dissertation director, Ken De Jong. I have been extremely fortunate to have had access
to his considerable insight into the field of evolutionary computation. I also thank my
other committee members Ken Hintz, Eugene Norris, and Gheorghe Tecuci for their helpful
comments and suggestions regarding this work.

I am also grateful to doctoral students Jayshree Sarma, Alan Schultz, Bill Spears, and
Haleh Vafaie for their companionship and their willingness to listen when I needed a sound-
ing board for ideas; research librarians Maryalls Bedford, Amy Keyser, and Cathy Wiley
at the Naval Research Laboratory for their help in tracking down references; Eric Bloedorn
at the Machine Learning Laboratory at George Mason University for running AQ15 on the
congressional voting records data set and providing me with the conjunctive descriptions
and related performance data documented in chapter 6; Scott Fahlman at Carnegie Mellon
University for use of his cascade-correlation simulator; and Anne Marie Casey for her help
in editing this dissertation. Special thanks go to my wife, Amy, for her encouragement,
patience, and understanding.

This dissertation was written on a NeXT workstation and typeset with LATEX2e. The
graphics were produced with Gnuplot, Mathematica, and Diagram!2. All the experi-
ments were run on two large networks of Sun workstations at the Navy Center for Applied
Research in Artificial Intelligence, and the Center for the New Engineer at George Mason
University.

This work was supported in part by the Office of Naval Research. I am extremely grateful
to John Grefenstette at the Navy Center for Applied Research in Artificial Intelligence for
making this financial support possible.

v

TABLE OF CONTENTS

List of Figures viii

List of Tables xi

Abstract xii

1 Introduction 1

1.1 Motivation . 1

1.2 Current Approaches . 3

1.3 Objectives . 3

1.4 Methodology . 4

1.5 Proposed Coevolutionary Model . 4

1.6 Contributions . 5

1.7 Dissertation Outline . 6

2 Background and Related Work 7

2.1 Evolutionary Computation . 7

2.1.1 Genetic Algorithms . 8

2.1.2 Evolution Strategies . 11

2.1.3 Evolutionary Algorithm Differences 13

2.2 Issues in Evolving Coadapted Subcomponents 14

2.2.1 Problem Decomposition . 14

2.2.2 Interdependencies Between Subcomponents 15

2.2.3 Credit Assignment . 17

2.2.4 Population Diversity . 18

2.2.5 Parallelism . 18

2.3 Related Work . 19

2.3.1 Single Population Approaches . 19

2.3.2 Multiple Population Approaches . 26

2.4 Limitations of Previous Approaches . 28

3 Architecture 30

3.1 A Model of Cooperative Coevolution . 30

3.2 Issues Revisited . 35

3.2.1 Problem Decomposition . 35

3.2.2 Interdependencies Between Subcomponents 36

vi

3.2.3 Credit Assignment . 36

3.2.4 Population Diversity . 37

3.2.5 Parallelism . 37

3.3 Additional Advantages of the Model . 38

3.3.1 Speciation Through Genetic Isolation 38

3.3.2 Generality . 39

3.3.3 Efficiency . 39

3.4 A Simple Example . 39

4 Analysis of Sensitivity to Selected Problem Characteristics 43

4.1 Selection of Problem Characteristics . 43

4.2 Methodology . 44

4.3 Sensitivity to Random Epistatic Interactions 45

4.3.1 NK-Landscape Problem . 46

4.3.2 Experimental Results . 48

4.4 Sensitivity to Highly Ordered Epistatic Interactions 56

4.4.1 Coevolutionary Function Optimization 56

4.4.2 Function Separability . 57

4.4.3 Test Suite . 58

4.4.4 Experimental Results . 59

4.5 Sensitivity to Dimensionality . 64

4.5.1 Test Suite . 64

4.5.2 Experimental Results . 65

4.6 Sensitivity to Noise . 68

4.6.1 Test Suite . 68

4.6.2 Experimental Results . 68

4.7 Summary . 70

5 Basic Decomposition Capability of the Model 72

5.1 String Covering Problem . 73

5.2 Evolving String Covers . 73

5.3 Locating and Covering Multiple Environmental Niches 73

5.4 Finding an Appropriate Level of Generality 76

5.5 Adapting to a Dynamic Environment . 80

5.6 Evolving an Appropriate Number of Species 83

5.7 Summary . 85

6 Case Studies in Emergent Problem Decomposition 87

6.1 Artificial Neural Network Case Study . 87

6.1.1 Evolving Cascade Networks . 88

6.1.2 The Cascade-Correlation Approach to Decomposition 90

6.1.3 Two-Spirals Problem . 91

6.1.4 Experimental Results . 92

6.2 Concept Learning Case Study . 99

6.2.1 Evolving an Immune System for Concept Learning 100

vii

6.2.2 The AQ Approach to Decomposition 104
6.2.3 Congressional Voting Records Data Set 105
6.2.4 Experimental Results . 105

6.3 Summary . 113

7 Conclusions 115

7.1 Summary . 115
7.2 Future Research . 116

Bibliography 120

A Program Code for Cooperative Coevolution Model 132

B Parameter Optimization Problems 144

C Program Code for Coordinate Rotation Algorithm 153

viii

LIST OF FIGURES

2.1 Canonical genetic algorithm . 10

2.2 Two-point crossover and mutation operators 11

2.3 Canonical (µ, λ) evolution strategy . 13

2.4 Match set, target set, and connection strengths before and after modification
to a match set element . 17

2.5 An algorithm for modeling emergent fitness sharing in the immune system . 25

3.1 Canonical cooperative coevolution algorithm 31

3.2 Fitness evaluation of individuals from species S 32

3.3 Model of species interaction . 33

3.4 Birth and death of species . 34

3.5 Average match score between target set and best collaborations 41

3.6 Percent contribution of each species to best collaborations 42

4.1 Standard genetic algorithm applied to 24-bit NK landscape with various lev-
els of epistasis . 49

4.2 Standard genetic algorithm and random search on 24-bit NK landscape with
no epistasis (K = 0) and maximum epistasis (K = 23) 50

4.3 Coevolution and standard genetic algorithm on two uncoupled 24-bit NK
landscapes with no epistasis (K = 0) . 51

4.4 Coevolution and standard genetic algorithm on two uncoupled 24-bit NK
landscapes with low epistasis (K = 3) . 52

4.5 Coevolution and standard genetic algorithm on two uncoupled 24-bit NK
landscapes with moderate epistasis (K = 7) 52

4.6 Coevolution and standard genetic algorithm on two uncoupled 24-bit NK
landscapes with maximum epistasis (K = 23) 53

4.7 Effect of optimizing coupled NK landscapes separately and merging the final
solutions . 54

4.8 Coevolution and standard genetic algorithm on two coupled 24-bit NK land-
scapes (K = 7 and C = 2) . 54

4.9 Coevolution and standard genetic algorithm on two coupled 24-bit NK land-
scapes (K = 7 and C = 4) . 55

4.10 Coevolution and standard genetic algorithm on two coupled 24-bit NK land-
scapes (K = 7 and C = 8) . 55

4.11 Coevolution and standard genetic algorithm on two coupled 24-bit NK land-
scapes (K = 7 and C = 16) . 56

ix

4.12 Sensitivity of coevolution and standard genetic algorithm to coordinate ro-
tation of Ackley function . 60

4.13 Sensitivity of coevolution and standard genetic algorithm to coordinate ro-
tation of Rastrigin function . 60

4.14 Sensitivity of coevolution and standard genetic algorithm to coordinate ro-
tation of Schwefel function . 61

4.15 Sensitivity of coevolution and standard genetic algorithm to coordinate ro-
tation of extended Rosenbrock function . 63

4.16 Effect of a less greedy collaboration strategy on the optimization of the ro-
tated Ackley function . 63

4.17 Sensitivity of coevolution and standard genetic algorithm to changes in di-
mensionality of sphere model . 66

4.18 Sensitivity of coevolution and standard genetic algorithm to changes in di-
mensionality of extended Rosenbrock function 67

4.19 Sensitivity of coevolution and standard genetic algorithm to changes in the
standard deviation of noise in stochastic De Jong function 69

4.20 Sensitivity of coevolution and standard genetic algorithm to changes in the
standard deviation of noise in stochastic Rosenbrock function 70

5.1 Finding half-length, quarter-length, and eighth-length schemata 75

5.2 Final species representatives from schemata experiments 76

5.3 One species covering three hidden niches . 78

5.4 Two species covering three hidden niches . 78

5.5 Three species covering three hidden niches 79

5.6 Four species covering three hidden niches 79

5.7 Final representatives from one through four species experiments before and
after the removal bits corresponding to variable target regions 81

5.8 Shifting from generalists to specialists as new species are added to the ecosys-
tem on a fixed schedule . 83

5.9 Changing contributions as species are dynamically created and eliminated
from the ecosystem . 85

6.1 Example cascade network . 88

6.2 Training set for the two-spirals problem . 92

6.3 Effect of adding hidden units on field response of network generated with
cascade-correlation algorithm . 94

6.4 Effect of adding hidden units on field response of network generated with
cascade-correlation algorithm (continued) 95

6.5 Effect of adding hidden units on field response of network generated with
cooperative coevolution . 96

6.6 Effect of adding hidden units on field response of network generated with
cooperative coevolution (continued) . 97

6.7 B-lymphocyte and antigen representations 102

6.8 AQ algorithm . 104

6.9 Effect of initial bias on predictive accuracy of immune system model 107

x

6.10 Rule-based interpretation of B-cells from final immune system cover 110
6.11 Rule-based interpretation of AQ conjunctive descriptions 111
6.12 Immune system rule coverage and classification 112
6.13 AQ rule coverage and classification . 112

B.1 Inverted Ackley function . 145
B.2 Inverted Rastrigin function . 146
B.3 Inverted Schwefel function . 147
B.4 Inverted Rosenbrock function . 149
B.5 Inverted sphere model . 150
B.6 Inverted stochastic De Jong function (σ = 1.0) 151
B.7 Inverted stochastic De Jong function with noise removed 152

xi

LIST OF TABLES

4.1 NK-landscape model for N=5 and K=2 . 47
4.2 Expected global optimum of 24-bit NK landscapes 49

6.1 Required number of hidden units . 93
6.2 Effect of adding hidden units on training set classification 98
6.3 Issues voted on by 1984 U.S. House of Representatives 105
6.4 Mapping between voting records and binary strings 106
6.5 Final predictive accuracy comparison of learning methods 108
6.6 Required number of cover elements . 108
6.7 Interpretation of antibody schema . 109

DISSERTATION ABSTRACT

THE DESIGN AND ANALYSIS OF A COMPUTATIONAL MODEL OF
COOPERATIVE COEVOLUTION

Mitchell A. Potter
George Mason University, 1997
Thesis Director: Dr. Kenneth A. De Jong

As evolutionary algorithms are applied to the solution of increasingly complex systems,
explicit notions of modularity must be introduced to provide reasonable opportunities for
solutions to evolve in the form of interacting coadapted subcomponents. The difficulty
comes in finding computational extensions to our current evolutionary paradigms in which
such subcomponents “emerge” rather than being hand designed. At issue is how to identify
and represent such subcomponents, provide an environment in which they can interact
and coadapt, and apportion credit to them for their contributions to the problem-solving
activity such that their evolution proceeds without human involvement.

We begin by describing a computational model of cooperative coevolution that includes
the explicit notion of modularity needed to provide reasonable opportunities for solutions
to evolve in the form of interacting coadapted subcomponents. In this novel approach,
subcomponents are represented as genetically isolated species and evolved in parallel. Indi-
viduals from each species temporarily enter into collaborations with members of the other
species and are rewarded based on the success of the collaborations in solving objective
functions.

Next, we perform a sensitivity analysis on a number of characteristics of decomposable
problems likely to have an impact on the effectiveness of the coevolutionary model. Through
focused experimentation using tunable test problems chosen specifically to measure the
effect of these characteristics, we provide insight into their influence and how any exposed
difficulties may be overcome.

This is followed by a study of the basic problem-decomposition capability of the model.
We show, within the context of a relatively simple environment, that evolutionary pressure
can provide the needed stimulus for the emergence of an appropriate number of subcompo-
nents that cover multiple niches, are evolved to an appropriate level of generality, and can
adapt to a changing environment. We also perform two case studies in emergent decom-
position on complex problems from the domains of artificial neural networks and concept
learning. These case studies validate the ability of the model to handle problems only
decomposable into subtasks with complex and difficult to understand interdependencies.

Chapter 1

INTRODUCTION

For over three decades we have been applying the basic principles of evolution to the solution
of technical problems in a variety of domains. This work was begun independently by
Rechenberg (1964) with his work on Evolutionsstrategie for function optimization, Fogel
(1966) with the evolution of finite state machines through Evolutionary Programming, and
Holland (1975) with a class of adaptive systems we now call Genetic Algorithms.

The fundamental principles on which all of these computational models of evolution are
based can best be summarized by nineteenth century naturalist Charles Darwin. In his
introduction to The Origin of Species, Darwin (1859) makes the following observation:

As many more individuals of each species are born than can possibly survive;
and as, consequently, there is a frequently recurring struggle for existence, it
follows that any being, if it vary however slightly in any manner profitable to
itself, under the complex and sometimes varying conditions of life, will have
a better chance of surviving, and thus be naturally selected. From the strong
principle of inheritance, any selected variety will tend to propagate its new and
modified form.

When we apply these principles to the solution of technical problems through computer
simulation, the individuals Darwin refers to become alternative solutions to the problem of
interest. The frequently recurring struggle for existence is simulated by limiting the size
of the population of problem solutions stored in computer memory. Variation between in-
dividuals results from making random changes to the population of evolving solutions by
mutating them in some fashion, and from recombining pieces of old solutions to produce
new solutions. The process of natural selection, in which profitable variations increase the
likelihood of endowed individuals surviving and passing their characteristics on to future
generations, can be modeled in a number of ways. Some evolutionary algorithms, for ex-
ample, use a technique in which better problem solutions have a higher probability of being
recombined into new solutions and thereby preserving the attributes that made them vi-
able. Other evolutionary algorithms take the opposite approach by ensuring that the poorer
solutions have a higher probability of being eliminated from the population.

1.1 Motivation

Computational models of evolution have a number of advantages over other problem-solving
methods. First, they can be applied when one has only limited knowledge about the prob-

1

2

lem being solved. For example, unlike some other problem-solving methods, the application
of an evolutionary algorithm to a function optimization problem would not require knowl-
edge of first or second derivatives, discontinuities, and so on. The minimal requirement
is the ability to approximate the relative worth of alternative problem solutions. In the
field of evolutionary computation, we use the term fitness to mean the relative worth of a
solution as defined by some objective function. Note that this definition differs somewhat
from the meaning of fitness in population genetics, which is the expected frequency of a
particular genotype in the population. Second, evolutionary computation is less susceptible
to becoming trapped by local optima. This is because evolutionary algorithms maintain a
population of alternative solutions and strike a balance between exploiting regions of the
search space that have previously produced fit individuals and continuing to explore un-
charted territory. Third, evolutionary computation can be applied in the context of noisy
or non-stationary objective functions. This advantage makes the evolutionary computation
model attractive for solving problems in a wide range of domains, particularly when the
goal is to construct a system that exhibits some of the characteristics of biology, such as
intelligence or the ability to adapt to change.

At the same time, difficulties can and do arise in applying the traditional computational
models of evolution to some classes of problems. We are particularly interested in three
such problem classes. The first class includes problems in which multiple distinct solutions
are required, as in multimodal function optimization. The second class is composed of
problems in which many small specialized subcomponents are required to form a composite
solution, as in rule-based systems and artificial neural networks. Problems from this class are
sometimes referred to as covering problems due to their similarity to the classic set covering
problem from mathematics. The third class consists of problems that are decomposable into
a number of simpler subtasks and can most effectively be solved using a divide-and-conquer
strategy, as would be the case, for example, in route planning tasks such as the traveling
salesman problem, which can be decomposed into simpler subtours, and in behavior learning
tasks such as those one would encounter in the domain of robotics, where complex behavior
can be decomposed into simpler subbehaviors.

There are two primary reasons traditional evolutionary algorithms have difficulties with
these types of problems. First, the population of individuals evolved by these algorithms
has a strong tendency to converge because an increasing number of trials are allocated to
observed regions of the solution space with above average fitness. This is a major disad-
vantage when solving multimodal function optimization problems where the solution needs
to provide more information than the location of a single peak or valley. This strong con-
vergence property also precludes the long-term preservation of coadapted subcomponents
required for solving covering problems or utilizing the divide-and-conquer strategy, because
any but the strongest individual will ultimately be eliminated. Second, individuals evolved
by traditional evolutionary algorithms typically represent complete solutions and are eval-
uated in isolation. Since interactions between population members are not modeled, even
if population diversity were somehow preserved, the evolutionary model would have to be
extended to enable coadaptive behavior to emerge.

The hypothesis underlying this dissertation is that to apply evolutionary algorithms ef-
fectively to increasingly difficult problems, explicit notions of modularity must be introduced

3

to provide reasonable opportunities for solutions to evolve in the form of interacting coad-
apted subcomponents. The difficulty comes in finding reasonable computational extensions
to our current evolutionary paradigms in which such subcomponents “emerge” rather than
being designed by hand. At issue is how to identify and represent such subcomponents, pro-
vide an environment in which they can interact and coadapt, and apportion credit to them
for their contributions to the problem-solving activity such that their evolution proceeds
without human involvement.

1.2 Current Approaches

One of the earliest examples of extending the basic evolutionary model to allow coadapted
subcomponents to emerge is Holland’s (1978) classifier system for rule learning. Classifier
systems attempt to accomplish this by way of a single population of interacting rules whose
individual fitness values are determined by their interactions with other rules through a
simulated micro-economy. Other extensions have been proposed to encourage the emer-
gence of niches and species in a single population, for example, De Jong’s (1975) crowding
technique and the fitness sharing technique of Goldberg (1987).

The use of multiple interacting subpopulations has also been explored as an alternative
mechanism for the emergence of niches using the so-called island model. In the island model
a fixed number of subpopulations (breeding islands) evolve competing solutions. In addition,
individuals occasionally migrate from one island to another, so there is a gradual mixing
of genetic material. The work of Grosso (1985) represents an early example of extending
an evolutionary algorithm using the island model. Some previous work also has looked at
cooperating and competing genetically isolated subpopulations, for example, the work on
emergent planning and scheduling by Husbands (1991), and the coevolution of parasites
and hosts by Hillis (1991).

These previous approaches suffer from a number of limitations. Classifier systems are
complex and are limited to the evolution of rule-based systems. The extensions for the
emergence of niches in a single population, such as crowding and fitness sharing, are ap-
propriate for multimodal function optimization but do not model the interaction between
subcomponents required when solving covering problems or using the divide-and-conquer
strategy. Similarly, the island model has been used primarily to slow convergence and does
not support the type of interaction between subcomponents required for them to coadapt
and form competitive, exploitative, or cooperative relationships. Regarding the previous
coevolutionary approaches, such as the parasites and hosts model of Hillis, they support
rich interactions between species but have involved a user-specified decomposition of the
problem.

1.3 Objectives

The primary goal of this dissertation is to develop a new macroevolutionary model of coop-
erative coevolution that combines and extends ideas from earlier evolutionary approaches
to improve their generality and their ability to evolve interacting coadapted subcomponents

4

without human involvement. The following objectives are our milestones in achieving this
goal:

• To design and implement a computational model of cooperative coevolution that in-
cludes the explicit notion of modularity needed to provide reasonable opportunities
for solutions to evolve in the form of interacting coadapted subcomponents.

• To study the effect of some important characteristics of decomposable problems on
the performance of the coevolutionary model.

• To analyze the emergent problem-decomposition capabilities of the coevolutionary
model.

• To apply the coevolutionary model to problems that can only be decomposed into
subtasks with complex and difficult to understand interdependencies, and compare
and contrast the resulting decompositions with those produced by task-specific non-
evolutionary methods.

1.4 Methodology

We will primarily use an experimental methodology backed up with statistical analysis
to achieve the objectives of this dissertation. In cases where it is possible to measure
statistical significance, plots showing the mean performance over time will be overlaid with
95-percent confidence intervals computed from Student’s (1908) t-statistic. We use 95-
percent confidence intervals rather than the more common standard-error bars because
confidence intervals provide a more precise measure of the likely true mean (Miller 1986).
We will also compute p-values from the two-sample t-test or an analysis of variance when
appropriate. For a detailed description of these tests see a basic book on statistical analysis,
for example, (Bhattacharyya and Johnson 1977). We generally check our distributions for
normality; however, Miller (1986) shows that as long as the sample sizes are sufficiently
large the t-statistic is robust for validity even when the distributions deviate from normal.

Performance comparisons are not made with non-evolutionary methods other than in the
emergent decomposition case studies. The complex issue of whether the basic evolutionary
paradigm is “better” than other methods from a computational perspective on a particular
class of problems is not the focus of this dissertation. The interested reader is referred
to Schwefel (1995) for a detailed comparison of evolutionary computation and traditional
function optimization techniques, Schaffer et al. (1992) for a survey of a number of studies
comparing evolutionary algorithms with gradient methods for training neural networks, and
Neri and Saitta (1996) for a comparison of genetic search and symbolic methods for concept
learning.

1.5 Proposed Coevolutionary Model

In the proposed cooperative coevolutionary model, multiple instances of an evolutionary
algorithm are run in parallel; each instance of which evolves a genetically isolated population
of interbreeding individuals. Because only individuals within the same population have the
potential of mating, by definition, each population represents a single species. Although

5

the species are isolated genetically, they are evaluated within the context of each other.
Specifically, each species will enter into a temporary collaboration with members of the
other species and will be rewarded based on the success of the collaboration. Therefore the
species are considered sympatric, that is, they live in the same place, rather than allopatric,
meaning geographically isolated, and their ecological relationship is one of helping each
other, which is referred to in the field of evolutionary genetics as mutualism (Smith 1989).

The proposed coevolutionary model has a number of beneficial characteristics. First,
it is a general problem solving method that is applicable to a variety of problem classes.
For example, in the chapters that follow we will apply the model to string covering, func-
tion optimization, concept learning, and the evolution of neural networks. Second, it is
a macroevolutionary model that is not limited to a particular underlying evolutionary al-
gorithm. We will show, for example, that it can extend the usefulness of both genetic
algorithms and evolution strategies. Third, the model is efficient. The evolution of genet-
ically isolated species in separate populations can be easily distributed across a network
of processors with little communication overhead and unproductive cross-species mating is
eliminated. In addition, by evaluating individuals from one species within the context of in-
dividuals from other species, the model constrains the search space in a fashion similar to the
coordinate strategy used in traditional parameter optimization; see, for example, (Schwefel
1995, 41–44). This enables high-dimensional problems to be solved more efficiently. Fourth,
the dynamics of the model are such that reasonable problem decompositions emerge due to
evolutionary pressure rather than being specified by the user.

1.6 Contributions

The main contributions of this dissertation are as follows:

• We have designed and implemented a novel computational model of cooperative coevo-
lution in which the subcomponents of a problem solution are drawn from a collection
of genetically isolated species that collaborate with one another to achieve a common
goal.

• We have performed a sensitivity analysis on four characteristics of decomposable prob-
lems likely to have a major impact on the performance of the coevolutionary model.
Specifically, we have analyzed the effect of the amount and structure of interdepen-
dency between problem subcomponents, the dimensionality of the decomposition, and
the ability of the model to handle inaccuracy in the fitness evaluation of the collabo-
rations.

• We have shown that evolutionary pressure can be a powerful force in provoking the
emergence of coadapted species that, working together, are able to discover important
environmental niches, are appropriate in number and generality to cover those niches,
and can assume changing roles in response to a dynamic fitness landscape.

• We have applied the coevolutionary model to problems from the domains of concept
learning and neural-network construction that can only be decomposed into subtasks
with complex and difficult to understand interdependencies, and have compared and
contrasted the resulting problem decompositions with those produced by task-specific
non-evolutionary methods.

6

1.7 Dissertation Outline

In chapter 2 we begin with an introduction to evolutionary computation. This is followed
by a discussion of several important issues related to the application of evolutionary al-
gorithms to decomposable problems and a survey of previous related work. In chapter 3
we describe our computational model of cooperative coevolution, explain how the model
addresses the issues raised in chapter 2, and discuss some of the advantages of the model
over alternative approaches. The chapter concludes with a simple example of applying the
model to a string covering problem. In chapter 4, a sensitivity analysis is performed on
a number of characteristics of decomposable problems likely to affect the performance of
the coevolutionary model. This analysis takes the form of focused experimentation using
tunable test functions chosen specifically to measure the effect of these characteristics. The
emergent problem decomposition properties of cooperative coevolution are studied in chap-
ter 5 through a series of experiments involving the string covering problem from chapter 3.
This is followed in chapter 6 by two case studies in the domains of artificial neural networks
and concept learning that further explore the emergent decomposition capabilities of the
model on problems that can only be decomposed into subtasks with complex and difficult
to understand interdependencies. Finally, chapter 7 summarizes the results obtained in the
dissertation and suggests some directions for future research.

Chapter 2

BACKGROUND AND RELATED WORK

A brief introduction to evolutionary computation, a discussion of the major issues related
to the application of these algorithms to problems whose solutions require interacting coad-
apted subcomponents, and an overview of previous work addressing these issues is provided
in this chapter. The chapter concludes with a summary of the limitations of previous
approaches.

2.1 Evolutionary Computation

There are a number of different classes of algorithms that make up the field of evolutionary
computation. In the early 1960’s in Germany, Ingo Rechenberg, inspired by the “method
of organic evolution”, conceived the idea of solving optimization problems in aerodynamics
by applying random mutations to vectors of real-valued shape defining parameters. This
class of algorithms became known as Evolution Strategies (Rechenberg 1964). About the
same time in the United States, work was being done independently by Lawrence Fogel
et al. (1966) on the evolution of artificially intelligent automata represented as finite-state
machines using a technique called Evolutionary Programming, and by John Holland (1975)
on the analysis of a class of reproductive plans which were the precursors of what we now call
Genetic Algorithms. More recently, a fourth class of evolutionary algorithms has emerged
for generating Lisp programs. Early work in this area by Lynn Cramer (1985), Joe Hicklin
(1986), and Cory Fujiki (1987) has been extended by John Koza (1989, 1992) and given the
name Genetic Programming.

Although there are certainly differences among these four classes of algorithms, they are
all based on the same fundamental principles of Darwinian evolution. These principles are
as follows:

1. Organisms have a finite lifetime; therefore, propagation is necessary for the continua-
tion of the species.

2. Offspring vary to some degree from their parents.

3. The organisms exist in an environment in which survival is a struggle and the varia-
tions among them will enable some to better adapt to this difficult environment.

4. Through natural selection, the better-adapted organisms will tend to live longer and
produce more offspring.

7

8

5. Offspring are likely to inherit beneficial characteristics from their parents, enabling
members of the species to become increasingly well adapted to their environment over
time.

In summary, evolutionary computation is simply the application of these Darwinian prin-
ciples to the solution of technical problems through computer simulation. We illustrate
the evolutionary computation approach to problem solving with a simple example from the
domain of function optimization.

Example 2.1 Given the following function:

f(~x) =
n
∑

i=1

x2
i ,

our goal is to find values for the n independent variables such that the function is minimized.
To achieve this goal through a computer simulation of evolution, we begin by selecting a
representation for our population of competing solutions. One possibility is to use a bi-
nary representation for encoding elements of Rn. In general, binary string representations
are manipulated directly by genetic algorithms, real-valued vector representations are ma-
nipulated by evolution strategies, graph representations are manipulated by evolutionary
programming, and tree representations are manipulated by genetic programming. We simu-
late propagation and inheritance through a process of recombination; that is, segments from
one solution are combined with segments from another solution to create offspring. In this
way, like begets like. The process of recombination, along with occasional random muta-
tions, provide the source of variation. Death is simulated simply by replacing old solutions
in the population with the new ones being created. Natural selection is accomplished by
choosing the better problem solutions more often for recombination, thereby allowing them
to pass their characteristics on to future generations more often than “less fit” solutions.
Alternatively, less fit solutions could be chosen more often to be replaced. We determine
the fitness of a solution by decoding it into the corresponding element of Rn and applying
the resulting real-valued parameter vector to the target function f(~x). The smaller the
function value produced, the higher the fitness of the solution. Given these conditions,
Darwin’s theory predicts that a population will adapt to its environment over time. In the
context of our simple function optimization example, the theory predicts that solutions will
evolve to produce results closer and closer to the desired minimum when applied to the
target function.

2.1.1 Genetic Algorithms

Up to this point, we have intentionally kept our description of evolutionary computation
at a high level of abstraction to emphasize the similarities between the various classes of
evolutionary algorithms. As our primary focus in this dissertation is genetic algorithms, and
to a lesser extent, evolution strategies, in this and the next section we provide a more detailed
description of these two classes of algorithms. For a more comprehensive introduction
to genetic algorithms than is provided here, including basic mathematical foundations, a
detailed survey of applications, and a simple Pascal implementation, see (Goldberg 1989).

9

As the name implies, genetic algorithms model the evolutionary process at the level of the
genome. Before a genetic algorithm can be used to solve a problem it is necessary to define
a genetic code and a mapping between the genetic code and problem solutions. In biology,
the genetic code of an organism is referred to as its genotype, and the instantiation of this
code, that is, the physical realization of the being, is referred to as the organism’s phenotype.
Although we use this and other biological terminology here, we must emphasize that genetic
algorithms are inspired by, rather than intended to be a true model of, evolutionary genetics.
Therefore, terms such as genotype, phenotype, chromosome, and so on are used loosely.

In biological chromosomes, information is encoded within a strand of deoxyribonucleic
acid (DNA) consisting of a long sequence of four bases: adenine, cytosine, guanine, and
thymine. The entire genetic code of an organism is written in this four letter (A, C, G,
and T) alphabet. In genetic algorithms, a chromosome is typically represented by a string
written in a two-letter alphabet consisting of ones and zeros1.

The process of designing a genetic code that can be used to construct problem solutions
is illustrated with the following two examples from the domains of function optimization
and artificial neural networks.

Example 2.2 A genetic algorithm is to be used to minimize a function f(~x) of integer-
valued variables. Furthermore, we know that the function variables are constrained to
the range (0, 1023). A reasonable choice for this problem would be to use a binary coded
decimal representation with ten bits allocated for each function variable. For example, given
eight function variables, our chromosome would have a total length of 80 bits. The specific
genotype-to-phenotype mapping would be as follows:

xk =
10
∑

i=1

2i−1chromosome[i + 10k],

where k is the index of a function variable. To compute the fitness of one of these individuals,
we would construct an integer-valued parameter vector from its genetic code and apply the
vector to the function we are minimizing. Smaller resulting function values will be produced
by individuals with higher fitness.

Example 2.3 A genetic algorithm is to be used to determine the binary connection matrix
of an artificial neural network. The network has 16 neural units—each with the potential of
being connected to any of the other units. The connection matrix C is defined as follows:

ci,j =

{

1 if a connection exists between units i and j
0 otherwise.

A reasonable choice for this problem would simply be to linearize the 16 x 16 connection ma-
trix into a binary chromosome of length 256. The specific genotype-to-phenotype mapping
would be as follows:

ci,j = chromosome[i + 16j].

1Although the most common representation used by genetic algorithms is a haploid chromosome imple-
mented as a fixed-length binary string, these algorithms are not restricted to this representation.

10

t = 0
Initialize Pt to random individuals from {1, 0}l

Evaluate fitness of individuals in Pt

WHILE termination condition is false BEGIN

Select individuals for reproduction from Pt based on fitness
Apply genetic operators to reproduction pool to produce offspring
Evaluate fitness of offspring
Replace members of Pt with offspring to produce Pt+1

t = t + 1
END

Figure 2.1: Canonical genetic algorithm

To compute the fitness of one of these individuals, we would build an artificial neural
network using its genetic code as a connection matrix specification and train the network
on some example problems. We would then use the ease of training, the accuracy of the
final network output, or some combination of these two metrics as a fitness measure of the
individual.

Once we have defined a genetic code, a mapping from the genetic code to an instantiation
of a problem solution, and a method for evaluating the fitness of the solutions, the canonical
genetic algorithm shown in figure 2.1 can be used to evolve a population of solutions. In
the figure, P is a population, t is a discrete unit of time, and l is the chromosome length.
The algorithm begins by initializing a population of individuals (genotypes). A random
initialization would normally be used; however, for some applications knowledge may be
available to enable the population to be more intelligently initialized. Each genotype is
then decoded into a problem solution instantiation (phenotype) and its fitness evaluated.
If a satisfactory solution does not exist in the initial population, individuals are chosen
non-deterministically, based on their fitness, to reproduce. Once a reproductive pool has
been selected, recombination is applied to create offspring and the offspring are mutated.
Next, the fitness of each offspring is evaluated. Finally, old population members are, with
equal likelihood, randomly replaced with the offspring to produce a new population. This
select, recombine, evaluate, and replace cycle continues until a satisfactory solution is found
or until a prespecified amount of time has elapsed.

As the algorithm runs, fitness-based selection allocates an increasing number of trials
to regions of the solution space with an above average observed fitness. Genetic operators
enable the algorithm to explore regions of the solution space not represented in the current
population. This combination of exploitation and exploration enables the population to
evolve to higher levels of fitness.

A commonly used selection technique called fitness proportionate selection is defined as

Pi(t + 1) =
fi(t)

1
n

∑n
j=1 fj(t)

, (2.1)

11

1 1 0 1 0 0 1 1 1 0 0

0 0 1 0 0 1 0 0 0 0 1

1 1 1 0 0 1 1 1 1 0 0

0 0 0 1 0 0 0 0 0 0 1

0 1 1 1 0 0 1 1 0 1 0 01 1 1 0 0 1 1 1 1 0

Two-point crossover

Mutation

Figure 2.2: Two-point crossover and mutation operators

where n is the population size, Pi represents the selection probability of chromosome i,
and fi represents the fitness of i. The denominator of equation 2.1 on the preceding page
computes the average fitness of the population at time t, where time is expressed discretely
in generations. This selection technique will allocate proportionately more population slots
to above average individuals and proportionately fewer slots to below average individuals.

The two most commonly used genetic operators, mutation and crossover, are shown
in figure 2.2. The crossover operator will recombine genetic material from two parents
to produce offspring. The version shown is called two-point crossover because it cuts the
parent chromosomes at two random loci and swaps the segments between them. Another
commonly used crossover operator called uniform crossover swaps each bit from one parent
chromosome with the corresponding bit from another parent chromosome with a probability
of 0.5. The mutation operator shown in the figure randomly flips bits in a chromosome to
their opposite state. In genetic algorithms, mutation is normally used as a background
operator, and as such, it is applied at a low rate. A typical mutation rate is 1/l, where l is
the number of bits in the chromosome. This results in an average of one bit mutated per
chromosome.

One important distinction between mutation and crossover is that mutation has the
ability to introduce new alleles into the genetic pool. For example, if every chromosome in
the population contained a zero at locus seven, mutation could create an individual with
a one at this position. Crossover does not have this characteristic. Specifically, it only
recombines existing genetic material.

Here we have described the most commonly used genetic operators. Many other opera-
tors have been implemented, but they are used mostly in cases where the genetic algorithm
utilizes some representation other than a binary string.

2.1.2 Evolution Strategies

Although most of our work has been in the area of genetic algorithms, we have not com-
pletely restricted ourselves to this class of evolutionary algorithms. Evolution strategies, for

12

example, can also be enhanced by our macroevolutionary model of cooperative coevolution;
and later in this dissertation we will explore the application of a “coevolution strategy” to
the problem of artificial neural network construction. In this section, we briefly introduce
some of the major forms of evolution strategies to provide the necessary background for
this later study. For a more thorough description of evolution strategies than we provide
here, including a mathematical analysis of the speed of convergence, a detailed comparison
with other forms of numerical optimization, and Fortran implementations of a number of
different variations, see (Schwefel 1995).

While genetic algorithms simulate evolution at the level of the genome, evolution strate-
gies, and the other classes of evolutionary algorithms in use today, directly evolve pheno-
types. Because evolution strategies were developed specifically for numerical optimization,
they represent phenotypes as real-valued vectors.

The original evolution strategy was a two-membered scheme consisting of one parent
and one offspring (Rechenberg 1964). In the basic algorithm, a parent is mutated to create
an offspring, and the more highly fit of the two individuals survives into the next generation.
This algorithm was later generalized into two multimembered forms—the so-called (µ+λ)
and (µ, λ) evolution strategies. The parameters µ and λ refer to the number of parents
and offspring respectively. In the (µ+λ) form, the parents and offspring are combined into
a single selection pool and the µ best individuals survive into the next generation. In
contrast, the (µ, λ) evolution strategy selects the µ survivors only from the set of offspring.
As a result, no parents survive from one generation into the next. Given these definitions,
the original two-membered scheme can be denoted by (1+1).

The ratio λ/µ of offspring to parents is usually seven or more. The larger this ratio, the
greater the chance that each parent will produce at least one offspring superior to itself.
Therefore, the difference between the (µ+λ) and (µ, λ) evolution strategies becomes less
relevant when the offspring to parent ratio is large.

The canonical (µ, λ) evolution strategy is shown in figure 2.3 on the next page. The other
forms are similar. A comparison with the canonical genetic algorithm shown in figure 2.1 on
page 10 reveals what appears to be a major difference—while genetic algorithms generally
select individuals to reproduce based proportionately on fitness and replace members from
the previous population uniformly, the evolution strategy does just the opposite. That is,
it selects individuals uniformly for reproduction and bases survival on fitness. In actuality,
these approaches are but two sides of the same coin and have been shown experimentally
to be equivalent (Bäck and Schwefel 1993).

Mutation, which is often the only evolutionary operator used, consists of perturbing
each element of the connection-weight vector by an amount produced from a Gaussian
distribution whose variance is adapted over time. Given the (1+1) strategy, the so-called
1/5 success rule is used to adjust the variance. Schwefel (1995) describes this rule-of-thumb
as follows:

From time to time during the optimum search obtain the frequency of successes,
i.e., the ratio of the number of successes to the total number of trials (mutations).
If the ratio is greater than 1/5, increase the variance, if it is less than 1/5,
decrease the variance.

The 1/5 success rule was developed by Rechenberg (1973) as a result of his theoretical

13

t = 0
Initialize Pt to µ random individuals from Rn

Evaluate fitness of individuals in Pt

WHILE termination condition is false BEGIN

Clone individuals with equal likelihood from Pt to produce λ offspring
Mutate offspring to create variation
Evaluate fitness of offspring
Select best µ offspring based on fitness to produce Pt+1

t = t + 1
END

Figure 2.3: Canonical (µ, λ) evolution strategy

investigation of the (1+1) strategy applied to two objective functions—the sphere and
corridor models. The rule has since been shown to produce a high rate of convergence for
these and other objective functions.

When using a multimembered strategy for evolving a population of µ parents and λ
offspring, each individual consists of two real-valued vectors. One vector contains variable
values and the other contains the corresponding standard deviations used by the mutation
operator. Rather than using the 1/5 success rule, the multimembered strategies mutate the
standard-deviation vectors each generation using a log-normal distribution as follows:

~σt+1 = ~σte
Gauss(0,σ′), (2.2)

where t denotes time expressed discretely in generations. The rate of convergence of the
evolution strategy is sensitive to the choices of σ′ and the initial setting of the standard-
deviation vectors ~σ. Unfortunately, no method for setting these values independent of the
objective function is known. One recommendation by Schwefel (1995) is to set σ′ as follows:

σ′ =
C
√

|~σ|
, (2.3)

where C depends on µ and λ. He recommends that C be set to 1.0 given a (10, 100)
evolution strategy. Schwefel also recommends initializing ~σ using the equation

σk =
Rk
√

|~σ|
for k = 1, 2, . . . , |~σ|, (2.4)

where the constant Rk is the maximum uncertainty range of the corresponding variable.

2.1.3 Evolutionary Algorithm Differences

One of the primary differences between genetic algorithms and the other evolutionary algo-
rithms in use today is that genetic algorithms simulate evolution at the level of the genome,

14

while the other evolutionary algorithms directly evolve phenotypes. As a result, the various
algorithms use different representations for the population of evolving individuals. While
genetic algorithms commonly use binary strings to represent individuals, evolution strate-
gies most commonly use real-valued vector representations, and genetic programming uses
tree representations. Evolutionary programming originally used graph representations, but
now uses whatever phenotypic representation is appropriate for the problem being solved.

Another difference between the various evolutionary algorithms is in the genetic oper-
ators used. In contrast to the bit flipping mutation operator commonly used in genetic
algorithms, most evolution strategies, for example, mutate genes through the addition of
Gaussian noise. Evolutionary programming applied to finite state machines mutates its
individuals by adding and deleting states, changing state transitions, and so forth. In addi-
tion, genetic algorithms and genetic programming emphasize the crossover operator, while
both evolution strategies and evolutionary programming emphasize mutation.

Finally, there are differences in the basic flow of the various evolutionary algorithms.
Genetic algorithms and genetic programming select individuals to reproduce based propor-
tionately on fitness and replace members from the previous population uniformly. Evolution
strategies and evolutionary programming assume the opposite strategy; that is, they select
individuals for reproduction uniformly and base survival on fitness. As previously men-
tioned, these differences have little effect on the outcome of evolution. The important point
is that all of these algorithms are based on the fundamental Darwinian principle of natural
selection.

The advantages of one evolutionary algorithm over another are a matter of current de-
bate. However, the macroevolutionary model we explore in this dissertation is not specific
to any one evolutionary algorithm; therefore, this debate has little relevance here and will
not be further addressed. For more information on this topic see, for example, a compar-
ison of evolution strategies, evolutionary programming, and genetic algorithms within the
context of the domain of function optimization by Bäck and Schwefel (1993).

2.2 Issues in Evolving Coadapted Subcomponents

Issues that must be addressed if we are to extend the basic computational model of evolution
to provide reasonable opportunities for the emergence of coadapted subcomponents will now
be examined in more detail. The issues include determining the precise characteristics of
the problem decomposition, handling interdependencies between subcomponents, assigning
appropriate credit to each subcomponent for its contribution to the problem-solving effort,
and maintaining diversity in the environment. We will also discuss the inherent parallelism
in evolution and additional opportunities that exist for parallel coevolutionary models.

2.2.1 Problem Decomposition

One of the primary issues that must be addressed if a complex problem is to be solved
through the evolution of coadapted subcomponents is how to determine an appropriate
number of subcomponents and the precise role each will play. We refer to this as problem
decomposition. This is true whether the decomposition is at the macroscopic level, as in
taking a divide-and-conquer approach in which a complex problem is broken into subtasks

15

that are individually easier to solve, or at the microscopic level, in which a large collection
of simple subcomponents form a composite solution.

An example of a macroscopic decomposition is solving an optimization problem of K
independent variables using the relaxation method2 (Southwell 1946; Friedman and Savage
1947). In the relaxation method, we cycle through the optimization of each of the K vari-
ables while holding the remaining K−1 variables fixed, thereby converting a single complex
optimization task into K significantly easier subtasks. The microscopic decomposition is
exemplified by rule based systems and artificial neural networks. In these systems each
rule or neuron “fires” in response to only a subset of the circumstances it is exposed to.
However, the collective behavior of the set of rules or neurons is expected to cover the entire
space of possible circumstances. As a result, these are often called covering problems due
to their similarity to the classic set covering problem from mathematics. More formally, let
Si represent the subset of circumstances the ith subcomponent correctly responds to. In a
covering problem, one must construct a society of K subcomponents such that

M =
K
⋃

i=1

Si, (2.5)

where M represents the entire set of circumstances the system is expected to manage.
For some problems an appropriate decomposition may be known a priori. For example,

given the problem of optimizing a function of K independent variables, it is reasonable
in some cases to take a divide-and-conquer approach and decompose the problem into K
subtasks as described above. However, there are many problems for which we have little
or no information concerning the number or role of subcomponents that ideally should be
in the decomposition. If the task is to learn classification rules, for example, we probably
will not know beforehand how many rules will be required to cover effectively a given set
of positive and negative examples or what characteristics of the examples each rule should
respond to. Even decomposing the function optimization problem of K variables becomes
non-trivial when there are nonlinear interactions between the variables. Perhaps rather
than decomposing the problem into K single-variable optimization subtasks as described
above, a better decomposition would be to cluster the optimization of interacting variables
into common subtasks.

Given that an appropriate decomposition is not always obvious, it is extremely important
that our problem-solving method addresses the decomposition task, either as an explicit
component or as an emergent property of the method. Ideally when using an evolutionary
algorithm, an appropriate decomposition will emerge as a result of evolutionary pressure;
meaning, good decompositions will have a selective advantage over poor decompositions.
For this to occur without human involvement, the basic evolutionary computation model
needs to be extended both computationally and representationally.

2.2.2 Interdependencies Between Subcomponents

If a problem can be decomposed into independent subcomponents, each can be solved with-
out regard to the others. Graphically, one can imagine each subcomponent evolving to

2This optimization method is known by a variety of names. Two of the more common alternatives are
the sectioning method and the coordinate strategy.

16

achieve a higher position on its own separate fitness landscape, where a fitness landscape is
simply a distribution of fitness values over either the genotype or phenotype space3. Unfor-
tunately, many problems can only be decomposed into subcomponents exhibiting complex
interdependencies. The effect of changing one of these interdependent subcomponents is
sometimes described as a “deforming” or “warping” of the fitness landscapes associated
with each of the other subcomponents to which it is linked (Kauffman and Johnsen 1991).
Because evolutionary algorithms are adaptive, they are generally well suited to problems
with a single dynamic fitness landscape resulting, for example, from a non-stationary ob-
jective function. However, given multiple dynamic fitness landscapes resulting from inter-
dependencies, the standard evolutionary computation paradigm must be extended to allow
some form of interaction between the linked subcomponents so they can coadapt.

The effect of interdependencies between subcomponents is illustrated with the following
example from the class of covering problems.

Example 2.4 An evolutionary algorithm is to be used to solve a simple binary string
covering task. We are given the following set of strings:

(0000, 0001, 0011, 0100, 0101, 1000)

which we will refer to as the target set. Our goal is to find the best possible three-element
set of perfectly or partially matching strings called the match set. In other words, we must
evolve a composite solution consisting of three subcomponents, where the subcomponents
in this case are match set elements. The match strength between two strings is computed
by summing the number of bits in the same position with the same value. The fitness of
each match set element is computed by determining the match strength between it and
each element of the target set, and summing the strengths in the cases where it matches
the target set element better than any other individual in the match set. The fitness of the
match set as a whole is computed by averaging the fitness values of each of its elements. If
two or more match set elements tie for the lead in matching a particular target set element,
the winner will be determined randomly. Since each match set element only gets credit when
it matches a target string better than—or at least as good as—the other two coevolving
elements, the three elements are interdependent.

Now assume that our evolutionary algorithm is run for some number of generations,
and the match set and associated strengths illustrated in the left half of figure 2.4 on the
facing page is generated. The solid connections between match set and target set elements
indicate clear wins, while dashed connections indicate wins from randomly broken ties.
The connections are labeled with match strengths. Using the fitness computation specified
above, the first match set element, 0100, will have a fitness of 7; the second match set
element, 0001, will have a fitness of 10; and the third match set element, 1000, will have a
fitness of 4. By averaging the fitness of the three subcomponents, the match set is given
a fitness of 7. Now assume the modification 1000 → 0000 is made to the third match set
element, which results in the match set and strengths illustrated in the right half of the
figure. The fitness of the third match set element will now be increased to 7 while the fitness
of the first match set element is reduced to a value of 4—even though the element itself

3We will generally not be concerned with the additional complexity of operator neighborhoods in the
fitness landscapes as studied by Jones (1995).

17

Generation K+1Generation K

Target set

0000

0001

0101

0011

0100

1000

0001

1000

0100

3

4

4

3
3

4

Target set

0000

0001

0101

0011

0100

1000

0001

0000

0100

4

4

3
3

3

4

Figure 2.4: Match set, target set, and connection strengths before and after modification
to a match set element

did not change. The fitness of the second match set element and the fitness of the match
set as a whole remains unchanged. Using our earlier characterization, we would say that
the fitness landscape associated with the first element has been warped by a change in the
third element.

2.2.3 Credit Assignment

When a decomposable task is being covered collectively by a set of partial solutions, the
determination of the contribution each partial solution is making is called the credit assign-
ment problem. If we are given a set of rules for playing the game of chess, for example, it
is possible to evaluate the fitness of the rule set as a whole by letting it play actual games
against alternative rule sets or human opponents while keeping track of how often it wins.
However, it is less obvious how much credit a single rule within the rule set should receive
given a win, or how much blame the rule should accept given a loss. The credit assignment
problem can be traced back to early attempts to apply machine learning to playing the game
of checkers by Arthur Samuel (1959). The problem faced by Samuel was in determining
how much credit or blame to assign to the elements of an attribute vector for correctly or
incorrectly, assessing the worth of various checkerboard configurations.

One of the fundamental principles of Darwinian evolution is that the likelihood of an
individual successfully passing its characteristics on to future generations is based on the
fitness of the individual. If our goal is to use a computational model of evolution to solve a
decomposable problem by way of a collection of coadapted subcomponents, there must be
a process by which credit or blame is assigned to each of the subcomponents for their role
in the health of the ecosystem. That is, we need to evaluate the subcomponents based on
their contribution to the problem solving effort as a whole.

18

2.2.4 Population Diversity

If one is using an evolutionary algorithm to find a single individual representing a satisfac-
tory solution to a problem, diversity only needs to be maintained in the population long
enough to perform a reasonable exploration of the search space. As long as a good solution
is found, it does not matter whether the final population consists of a single instance of this
individual or has converged to a collection of clones of the individual. In contrast, solving a
problem by way of a collection of coadapted subcomponents is not possible unless diversity
is maintained to the end.

There is continuous pressure in an evolutionary algorithm driving the population to
convergence. If one ignores for a moment stochastic effects and the disruptive effect of
crossover and mutation, the canonical genetic algorithm shown in figure 2.1 on page 10 will
allocate an increasing number of trials to above average regions of the sampled solution
space and a decreasing number of trials to below average regions. This is a result of the
Darwinian principal of natural selection, in which the more highly fit individuals produce a
greater number of offspring than the less fit individuals. In general, this also holds true for
evolution strategies, evolutionary programming, and genetic programming. With each new
generation, the average fitness of the population will rise, making above average individuals
increasingly exclusive. This, along with the effects of genetic drift, will eventually lead to a
population consisting mostly of clones of a single highly fit individual.

Although the addition of stochastic effects and evolutionary operators make the precise
trajectory of an evolutionary algorithm extremely difficult to predict, the pressure on the
population to converge remains. Fortunately, there are known techniques for maintaining di-
versity within a single population, for example, the crowding and fitness sharing algorithms
described in the section on multimodal function optimization beginning on page 22. Alter-
natively, we can achieve diversity in the ecosystem through genetically isolated species—the
approach taken both by natural systems and by the model of cooperative coevolution ex-
plored in this dissertation.

2.2.5 Parallelism

Although parallel computing in the sense of utilizing multiple processors is not necessary for
the evolution of coadapted subcomponents, it becomes a critical issue as we apply our algo-
rithms to the solution of increasingly difficult problems. Because evolutionary algorithms
evolve a population of solutions rather than a single solution, they are inherently parallel.
For example, the fitness evaluations of the individuals can be done in parallel on separate
processors. If determining the fitness of an individual is computationally expensive relative
to the rest of the evolutionary algorithm, this trivial parallelism will result in a near linear
speedup. Other ways of implementing a parallel evolutionary algorithm are also possible.
They include the coarse-grain approach of evolving large subpopulations independently on
a few processors and occasionally migrating individuals between processors, and the fine-
grain approach of distributing individuals, or small subpopulations, among many processors
and allowing them to interact with one another using localized mating rules.

Evolving a solution to a problem by way of a collection of coadapted subcomponents
presents an opportunity for additional parallelism. Using a coarse-grain approach we can
evolve each subcomponent in parallel on a separate processor. If the subcomponents are in-

19

dependent, no interprocessor communication is required until the final solution is assembled.
Even with interdependencies between subcomponents, only occasional communication is re-
quired between processors. Due to this low communication overhead, near linear speedup
will result independently of the computational expense of the fitness function.

2.3 Related Work

Previous examples of extending the basic evolutionary model to allow coadapted subcom-
ponents can be divided into approaches that have restricted the ecosystem to a single pop-
ulation of interbreeding individuals and those whose ecosystem has consisted of multiple
interacting populations.

2.3.1 Single Population Approaches

Classifier Systems

One of the earliest single-population methods for extending the basic evolutionary model to
allow coadapted subcomponents to emerge is the classifier system (Holland and Reitman
1978; Holland 1986). Briefly, a classifier system is a rule-based system in which a population
of stimulus-response rules is evolved using a genetic algorithm. Each rule is represented by
a fixed-length ternary string consisting of the symbols 0, 1, and #. Each rule also has an
associated strength. The operation of the classifier system consists of two phases. In the
first phase, the population of classification rules is applied to some problem. Generally, a
number of stimulus-response cycles will be executed in this phase. In the second phase,
the genetic algorithm generates a new population of classification rules by selecting rules
to reproduce based on the associated strengths, and applying genetic operators such as
crossover and mutation to the selected rules. These two phases will alternate until the
population of rules as a whole performs sufficiently well on the given task.

Along with the rules, there is a limited memory called the message list, and a matching
function. Fixed-length binary messages are posted on the message list, either from an
external environment or from the consequent of rules that have been activated. A rule is
eligible to become active when its antecedent matches a message on the message list. The ‘#’
symbol is used as a “don’t care” in this matching process. The rules are managed through
a simulated micro-economy. Specifically, all eligible rules participate in a bidding process
in which only the rules making the highest bids are activated. The bid made by a rule is a
function of its current strength and specificity. The dynamics of the micro-economy model
are such that clusters of coadapted rules evolve over time, resulting in an emergent problem
decomposition.

Computing the strength of each rule is the classic credit assignment problem described
in section 2.2.3. The classifier system solves this problem using an algorithm called the
bucket brigade. If the bucket brigade selects rule i for activation at time t, the strength of
the rule is reduced according to the equation

strength(i, t + 1) = strength(i, t)− bid(i, t). (2.6)

20

Simultaneously, all the rules j posting messages that are matched by i have their strengths
increased according to the equation

strength(j, t + 1) = strength(j, t) +
bid(i, t)

n
, (2.7)

where n is the number of rules posting messages matched by i. Occasionally, there will be
a positive environmental change and each currently active rule will have a payoff added to
its strength.

Although the classifier system addresses the issues of emergent problem decomposition,
interdependencies between subcomponents, credit assignment, and population diversity; it
accomplishes this through an economic rather than a biological model and is specific to
the task of evolving rule-based systems. In addition, the approach utilizes a number of
centralized control structures that limit parallelism.

Other Approaches to Evolving Rules

An alternative approach to evolving stimulus-response rules with a genetic algorithm was
developed by Smith (1983) in the system LS-1. Rather than evolving a population of rules
as in classifier systems, each variable-length LS-1 chromosome represents an entire rule
set. For historical reasons, representing an entire rule set with a chromosome is sometimes
referred to as the Pitt Approach, while representing a single rule with a chromosome is
referred to as the Michigan Approach (De Jong 1990). Since chromosomes are applied
to a task individually rather than collectively when using the Pitt Approach, there is no
longer an explicit credit assignment problem. However, the credit assignment problem still
exists internal to the chromosome and surfaces in another form called hitchhiking (Das and
Whitley 1991). Hitchhiking refers to a bad allele—a stimulus-response rule in this case—
receiving a selective advantage over a good allele simply because the rest of the chromosome
the bad allele appears in is very good. A disadvantage of LS-1 is that it is less modular
than the classifier system and does not benefit from the mutual constraint that occurs when
a group of individuals collectively solves a problem. The work of Smith has been greatly
extended, combined with ideas from classifier systems, and given a richer rule representation
in a system called SAMUEL (Grefenstette 1989; Grefenstette, Ramsey, and Schultz 1990).

Evolutionary computation has also been applied to the supervised learning of classifi-
cation rules. Early work in this area includes a system developed by Janikow (1991, 1993)
called GIL. This system uses a conjunctive representation for both the set of input examples
and the evolved concept descriptors. Each conjunct is a tuple consisting of an attribute,
a relation, and a set of values. A conjunction of these tuples is equivalent to a rule an-
tecedent. The rule consequent is an implicit identification of the concept being learned.
Each individual in the population consists of a disjunction of these conjunctions, equivalent
to a rule set. Internally, the descriptors are mapped into a binary string chromosome for
manipulation by a genetic algorithm. A similar approach has been taken in the design of
a system called GABIL (De Jong, Spears, and Gordon 1993). Although the specific repre-
sentation and genetic operators used by these two systems differ, they both adopt the Pitt
Approach.

Another method for evolving classification rules with a genetic algorithm has been de-
veloped by Giordana et al. (1994) in a system called REGAL. In REGAL, the Michigan

21

Approach is taken in which each individual in the population represents a single rule; specif-
ically, a conjunctive description in first order logic. A selection operator called universal
suffrage clusters individuals based on their coverage of a randomly chosen subset E of the
positive examples. If no individuals from the current population cover a particular element
of E , a covering individual is created with a seeding operator. By combining a single in-
dividual from each cluster, a disjunctive description guaranteed to cover E is formed. The
fitness of the individuals within each cluster is a function of their consistency with respect
to the set of negative examples and their simplicity. Universal suffrage addresses the is-
sues of problem decomposition and credit assignment, but is specific to the task of concept
learning. We will later discuss a distributed version of REGAL in section 2.3.2

Evolving Artificial Neural Networks

The evolution of artificial neural networks is another example of a covering problem, and
as such, it is similar to the problem of evolving rule-based systems. Therefore, it is not
surprising that the approaches for evolving solutions to these two types of problems are also
similar. Although there have been a number of studies proposing mappings between the
neural network model and classification systems (Compiani, Montanari, Serra, and Valastro
1988; Belew 1989; Farmer 1991), most of the early examples of evolving artificial neural
networks have used a technique in which all the neurons in the network are represented with
a single chromosome. Since this is analogous to the Pitt Approach to learning classification
rules, we will continue to use this terminology in the context of neural network evolution.

One of the first successful attempts to use a genetic algorithm to evolve neural networks
using the Pitt Approach was reported by Montana and Davis (1989). More specifically, they
evolved just the connection weights for a feed-forward network having a fixed topology. The
genetic algorithm was intended to replace the back-propagation algorithm (Rumelhart, Hin-
ton, and Williams 1986)—a gradient-descent approach to learning multilayered feed-forward
network connection weights that was the best technique known at the time. However, it was
later discovered that incompatible representations for equivalent networks coexisted in the
population and produced inferior offspring when mated, reducing the effectiveness of the
genetic algorithm substantially (Whitley, Starkweather, and Bogart 1990). This is called
the competing conventions problem.

An early Pitt Approach to using a genetic algorithm to evolve network topology was
explored by Miller et al. (1989). In their system, a chromosome represented the entire
topology of the network by linearizing the binary connection matrix of all the nodes as we
described in example 2.3 on page 9. To evaluate an individual, a network was constructed
with the connectivity specified by its chromosome and trained with the back-propagation
algorithm for a fixed number of epochs. The fitness of the individual was taken to be the
sum-squared error of the network after the final training epoch.

More recently, the Pitt Approach has been used to evolve both connection weights and
topology. For example, emergent approaches were taken independently by Potter (1992)
and Karunanithi et al. (1992) in which the topology evolved as a result of the connection
weight learning process. They accomplished this using a cascade architecture developed
by Fahlman (1990) in which new neural units are added when learning approaches an
asymptote. An alternative approach, in which both the topology and connection weights

22

are explicitly represented by an individual, was taken by Spofford and Hintz (1991).

In contrast to these earlier systems for evolving artificial neural networks, Moriarty
(1996) has developed a coevolutionary model more similar to the Michigan Approach in
which each individual represents a single neuron. The system is evolved with a genetic
algorithm and is called SANE (Symbiotic Adaptive Neuro-Evolution). In SANE, the geno-
type of each neuron specifies which input and output nodes it connects to and the weights
on each of its connections. A single generation consists of many cycles of selecting a random
subset of neurons from the population, connecting them into a functional neural network,
evaluating the network, and passing the resulting fitness back to each of the participating
neurons. Each neuron in the collaboration sums this fitness with the fitness values it has
received from earlier collaborations. By allowing a neuron to participate in a number of
different networks, its average fitness becomes a measure of how well it collaborates with
other neurons in the population to solve the target problem. Rewarding individuals based
on how well they collaborate results in the long term maintenance of population diversity
and a form of emergent decomposition. Currently, SANE is limited to the evolution of
artificial neural networks. Although the system could probably be adapted to other types
of covering problems, its use of a single interbreeding population confines its application to
problems in which all subcomponents share a common representation.

Finally, techniques such as shaping or chaining have been used to train animals to per-
form complex tasks in stages by breaking the tasks down into simpler behaviors that can
be learned more easily, and then using these simpler behaviors as building blocks to achieve
more complex behavior (Skinner 1938). A similar approach has been taken by deGaris
(1990) to evolve artificial neural networks for controlling simulated creatures, for example,
an artificial lizard called LIZZY. Rather than evolving a single large neural network to
control the creature, deGaris first hand-decomposes the problem into a set of component
behaviors and control inputs. A genetic algorithm is then used to evolve small specialized
neural networks individually, which deGaris calls GenNets, that exhibit the appropriate
behaviors. The resulting collection of GenNets implementing the various behavior and con-
trol functions are then “wired” together to form a completely functional creature. Shaping
has also been used by the reinforcement learning community to train robots (Singh 1992;
Lin 1993). Clearly, the human is very much in the loop when taking this approach.

Multimodal Function Optimization

Functions with more than one maximum or minimum are called multimodal functions.
When solving these problems, we are often interested in finding all the significant peaks or
valleys rather than just a single global optimum. The key issue here is the preservation of
population diversity.

An early technique for preserving diversity called crowding was introduced by De Jong
(1975). Crowding assumes a genetic algorithm model in which each iteration consists of
creating a single offspring, evaluating its fitness, and inserting it back into the population;
that is, during each generation a single individual is born and a single individual dies.
This is referred to as a steady-state model. The crowding algorithm is applied during the
replacement phase of the steady-state model by choosing a set of individuals randomly from
the population, determining which individual in the set is the most similar to the offspring,

23

and replacing this individual with the offspring. Crowding is able to preserve population
diversity for a time; but eventually, evolutionary pressure and genetic drift will result in
population convergence.

Another technique called fitness sharing, developed by Goldberg and Richardson (1987),
maintains population diversity when evolving solutions to multimodal functions by modi-
fying the fitness evaluation phase of the genetic algorithm. The following sharing function
is defined:

share(dij) =

1 if dij = 0

1−
(

dij

σs

)α
if dij < σs

0 otherwise,

(2.8)

where dij represents the distance between individuals i and j, σs is a cluster radius, and
α controls how quickly sharing drops off as distance increases. Distance can be measured
in either phenotype or genotype space, although phenotype space generally gives the best
results. The sharing function is used in the fitness computation as follows:

f ′

i =
fi

∑n
j=1 share(dij)

, (2.9)

where f is the raw fitness and n is the population size. When fitness sharing is applied,
the population evolves into a number of clusters of individuals about each maximum. Us-
ing biological terminology, the regions around the maximums are referred to as niches4.
Furthermore, the number of individuals in each niche is proportional to the fitness of its
associated maximum. The problems with fitness sharing are that it is expensive computa-
tionally because the distance between all pairs of individuals must be computed, and the
technique is sensitive to the σs parameter. Although a method for setting σs has been
developed, it makes strong assumptions about the shape of the multimodal function (Deb
and Goldberg 1989).

An iterative approach to evolving solutions to multimodal functions called the sequential
niche technique was developed by Beasley et al. (1993). This approach borrows from fitness
sharing the idea of fitness devaluation based on a distance metric. However, rather than
continuously modifying the fitness function based on the distance between individuals in
the current population, the sequential niche technique reduces the fitness of an individual
based on its distance from peaks found in previous runs of the genetic algorithm. If the
location of five peaks were desired, for example, five complete runs of the genetic algorithm
would be performed. Each run is terminated when improvement approaches an asymptote.
Although this technique is not as computationally expensive as fitness sharing, it suffers
from the same sensitivity to σs.

A different sort of technique explored by Perry (1984), and later by Spears (1994), for
maintaining genetic diversity in multimodal function optimization is to use tag bits to group
individuals into subpopulations. The basic idea is to reserve a region of the chromosome
for use as a subpopulation label. If n chromosome bits are allocated for this purpose, each
individual would be labeled as belonging to one of 2n unique subpopulations. Mating is
only allowed between individuals belonging to the same subpopulation. Since the tag bits

4Maintaining niche coverage implies more than diversity. For example, a randomly initialized population
is diverse but probably will not be clustered into niches.

24

are mutated along with the rest of the chromosome, individuals can in effect move from one
subpopulation to another. Spears normalized the fitness of each individual by dividing its
raw fitness by its subpopulation size. The combination of tag bits and the normalized fitness
metric enables individuals to be maintained on several peaks of a multimodal function. The
number of peaks that can be covered is a function of the population size and the number of
allocated tag bits. A disadvantage of the tag bit approach is that both of these parameters
must be prespecified by the user.

Modeling the Immune System

A more recent approach to maintaining population diversity, which also partially addresses
the issues of emergent problem decomposition and credit assignment, is to model a biolog-
ical system that has evolved to satisfy the same requirements, specifically, the vertebrate
immune system. The role of the immune system is to protect our bodies from infection
by identifying and destroying foreign material. Immune system molecules called antibod-
ies play an important role in this process by first identifying foreign molecules, and then
tagging them for removal. Molecules capable of being recognized by antibodies are called
antigens. For a more detailed description of the immune system, see section 6.2.1 beginning
on page 100.

The interaction between antibodies and antigens was first modeled using a binary string
representation by Farmer, Packard, and Perelson (1986). Their primary interest was in
studying a number of theories concerning idiotypic networks, one of the hypothesized reg-
ulatory mechanisms of the immune system. The model was later simplified and a standard
genetic algorithm used to evolve a population of antibody strings that covered a given
set of antigen strings (Stadnyk 1987). In this work, the crowding strategy developed by
De Jong (1975) was utilized to keep the population of antibodies from converging. More
recently, this work has been further extended (Forrest and Perelson 1990; Smith, Forrest,
and Perelson 1993; Forrest, Javornik, Smith, and Perelson 1993). Although this more recent
work also evolves antibodies with a single-population genetic algorithm, it introduces a new
stochastic algorithm called emergent fitness sharing that simulates the interactions between
antibodies and antigens responsible for preventing a homogeneous population of antibodies
from evolving within our bodies.

The algorithm for emergent fitness sharing is shown in figure 2.5 on the next page.
Within the context of the canonical genetic algorithm, this procedure would be executed
once each generation. A single execution computes the fitness of each of the antibodies
in the population through an iterative process. During each iteration, a single antigen is
selected randomly from a fixed collection of these foreign molecules, and an antibody set of
size σ is chosen randomly without replacement from an evolving population. The chosen
antibodies then hold a tournament to determine who matches the antigen most closely,
and the winner receives a fitness increment based on the quality of the match. The fitness
evaluation algorithm requires C iterations, where C is large enough to ensure that each
antigen will be selected at least once. A large value for C also gives each antibody many
opportunities to participate in antigen matching tournaments.

Although emergent fitness sharing enables the genetic algorithm to maintain diversity
and evolve a mixture of generalists and specialists, the size, σ, of the antibody set chosen

25

i = 0
WHILE i < C BEGIN

Randomly select single antigen j from fixed set of antigens
Randomly select set of antibodies S of size σ from antibody population
FOR each antibody k in S

scorek = quality of match between j and k
Choose best scoring antibody in S (randomly break ties)
Increment fitness of best antibody by its score
i = i + 1
END

Figure 2.5: An algorithm for modeling emergent fitness sharing in the immune system

each iteration strongly influences diversity and emergent generalization. In some respects,
the σ parameter is similar to the cluster radius parameter in the fitness sharing algorithm
described earlier. A large σ encourages more population diversity and more specialization,
while a small σ will result in less diversity and more generalization. No method of setting
σ has been reported other than trial and error; that is, the human is very much involved in
tuning the algorithm to produce good results.

As an aside, a slightly modified version of emergent fitness sharing has been used to
evolve strategies for the two-player iterated prisoner’s dilemma (Darwen and Yao 1996;
Darwen 1996). In this game, two players simultaneously and independently decide to either
cooperate with one another or defect. If both players cooperate, they each receive a larger
reward than if they both defect; however, if one player defects and the other cooperates, the
defector receives an even greater reward; see, for example, (Axelrod 1984). In the Darwen
and Yao study, the motivation for using emergent fitness sharing is to maintain a diverse
collection of strategies in the population to avoid over-specialization. Once the population
is sufficiently evolved, a tournament is held to determine which strategies work best against
each other. When confronted with a new opponent, the Hamming distance between it and
the evolved strategies is used to classify the opponent and select a counter-strategy from
the population.

Evolving Subroutines

Work on extending the basic evolutionary model to allow coadapted subcomponents is not
limited to genetic algorithms. Within the domain of genetic programming, Koza (1993)
has reported on the beneficial hand-decomposition of problems into a main program and a
number of subroutines. Rosca and Ballard (1994, 1996) have taken a more emergent ap-
proach through the exploration of techniques for automatically identifying blocks of useful
code, generalizing them, and adapting the genetic representation to use the blocks as sub-
routines in future generations. However, all genetic programming approaches to date have
focused on the coadaptation of structure that is highly specific to the evolution of computer

26

programs.

2.3.2 Multiple Population Approaches

The Island Model

Over sixty years ago, population geneticist Sewall Wright (1932) hypothesized that isolated
subpopulations with occasional migration between one another would collectively maintain
more diversity and reach higher fitness peaks than a single freely interbreeding population.
This idea, which Wright referred to as the island model, was confirmed using a genetic
algorithm by Grosso (1985). Grosso also found that the model was sensitive to the rate of
migration—too frequent migration resulted in results similar to a single freely interbreeding
population, and too little migration resulted in diversity but substandard fitness. These
ideas were also explored by Cohoon et al. (1987), who investigated the theory of punctu-
ated equilibria in which subpopulations pass through alternating phases of rapid evolution
and stasis; Petty et al. (1987), who used frequent migration to enable small populations
distributed over multiple processors to act as though they were a single large population;
and Tannese (1987, 1989), who experimented systematically with different migration rates.
In addition, Whitley and Starkweather (1990) applied a genetic algorithm with distributed
subpopulations to a variety of problems, and were consistently able to optimize larger prob-
lems with less parameter tuning using this technique.

Although the island model improves the performance of evolutionary algorithms by
maintaining more diversity in the ecosystem and providing more explicit parallelism, it does
not address any of the other issues related to the evolution of coadapted subcomponents.
Giordana et al. (1996) have taken a step in this direction by combining the island model with
the universal suffrage operator in a distributed version of their REGAL system, described
previously under single population approaches. In the distributed version of REGAL, each
island consists of a population of conjunctive descriptions that evolve to classify a subset
of the positive examples. The universal suffrage operator is applied within each island
population to ensure that all its assigned examples are covered. Migration of individuals
occurs between islands at the end of each generation. A “supervisor process” determines
which examples are assigned to each island, and occasionally reassigns them to encourage
a one-to-one correspondence between islands and modalities in the classification theory.
In other words, each island will ultimately produce a single conjunctive description that,
when disjunctively combined with a conjunctive description from each of the other islands,
will correctly classify all the positive and negative examples. This approach achieves good
problem decompositions but is highly task-specific.

Fine-Grain Approaches

Population diversity can also be maintained with a fine-grain parallel approach in which
individuals, or small subpopulations, are distributed among many processors and allowed to
interact with one another using localized mating rules (Mühlenbein 1989; Gorges-Schleuter
1989; Manderick and Spiessens 1989; Davidor 1991; Spiessens and Manderick 1991). With
this technique, population diversity is a function of the communication topology of the
processors. The greater the communication distance between two processors, the more likely

27

it will be that their respective subpopulations will differ. However, diversity maintained by
topology alone is transitory; that is, if the system is run for many generations, the population
will converge (McInerney 1992). Furthermore, the fine-grain approach alone is not sufficient
to allow the evolution of coadapted subcomponents.

Competitive Models

Biologists have theorized that one response of large multicellular organisms to the presence
of pathogens such as parasites is an increase in genetic diversity (Hamilton 1982). Hillis
(1991) has applied a model of hosts and parasites5 to the evolution of sorting networks using
a genetic algorithm. One species (the host population) represents sorting networks, and
the other species (the parasite population) represents test cases in the form of sequences
of numbers to be sorted. Hillis takes a fine-grain parallel approach in which individuals
evolve on a two-dimensional toroidal grid of processing elements. The members of a species
interbreed with one another using a Gaussian displacement rule, while interaction between
parasites and hosts is limited to the pairs of individuals occupying the same grid location.
The interaction between species takes the form of complementary fitness functions; that is,
a sorting network is evaluated on how well it sorts the test cases that coexist at its grid
location, while the test cases are evaluated on how poorly they are sorted. The host and
parasite species are genetically isolated and only interact through their fitness functions.
Because the host and parasite populations do not interbreed, they are full-fledged species
in a biological sense.

A competitive model was also used by Rosin and Belew (1995) to solve a number of
game learning problems, including tic-tac-toe, nim, and go. In their model, the two species
represent opponents in the game. Rather than using a grid topology as in Hillis’ work
to determine the pattern of interaction between species, they used an algorithm called
shared sampling. Briefly, in shared sampling each member of one species is matched against
a sample of opponents from the previous generation of the other species. The sample
of opponents is chosen based on their ability to win games. Furthermore, the sample is
biased toward opponents who have the ability to defeat competitors that few others in their
respective population can beat. The fitness evaluation procedure used by Rosen and Belew,
which they call competitive fitness sharing, rewards an individual based on the number of
opponents from the sample it defeats. The amount of reward resulting from each win is
a function of the number of other individuals in the population who can defeat the same
opponent. In some respects, this fitness evaluation procedure is similar to the algorithm for
emergent fitness sharing described earlier under single population approaches.

Both of these competitive models have demonstrated that this form of interaction be-
tween species helps to preserve genetic diversity and results in better final solutions when
compared with non-coevolutionary approaches. It can also result in a more computation-
ally efficient fitness function; for example, regarding Hillis’ work, each sorting network only
needs to be evaluated on a small collection of coevolving test cases. Two limitations of these
specific approaches to competitive coevolution are that they involve a hand-decomposition
of the problem and they have a narrow range of applicability.

5Although it was called a host-parasite model by Hillis, technically his work is an example of a competitive

model. In contrast, a true host-parasite model is exploitative (Smith 1989).

28

Cooperative Models

A genetic algorithm for coevolving multiple cooperative species was applied to job-shop
scheduling by Husbands (1991). Typically, job-shop scheduling systems generate an opti-
mum schedule given a set of descriptions for machining parts called process plans. In the
Husbands system, each species represents alternatives for a single process plan, and is ge-
netically isolated from the other species through the use of multiple populations. Husbands
also evolved a species of individuals, called the arbitrator species, for resolving conflicts
when two process plans need to use the same machine at the same time. In effect, the
arbitrator performs the scheduling task. Husbands used a genetic representation and op-
erators tailored to process plans. The fitness of each process plan was computed as the
machining and setup cost, plus an additional cost if the machining of the part was delayed
due to having to wait for a machine to become available. The fitness of the arbitrator
was computed as a function of the total amount of time spent in the job shop waiting for
machines to become available and the time required to finish machining all the parts. The
pattern of interaction between species was determined by first ranking the individuals in
each population based on fitness and then combining them with individuals having equal
rank from the other species to form complete solutions. In other words, the best individuals
from each species form a complete solution; the second best individuals form a complete
solution; and so on. Since the required number of process plans and what they needed to
accomplish were known beforehand, the problem was simply decomposed by hand.

Paredis (1995) used a cooperative, also referred to as symbiotic, two-species model for
the solution of a deceptive problem introduced by Goldberg et al. (1989). One species rep-
resents problem solutions as 30-bit vectors, and the other species represents permutations
on the order of the bits in the solutions. The motivation for this decomposition was that
some permutations of the bits enable a genetic algorithm to solve this particular decep-
tive problem more easily. Since it was not known beforehand which permutations would
be helpful, they were coevolved along with the solutions. Interaction between the two
species consisted of grouping each individual from the solution population with two ran-
domly chosen individuals from the permutation population and applying the two resulting
combinations to the deceptive problem. This process was repeated a number of times and
the fitness values averaged. As with the other coevolutionary models, this system involves
a hand-decomposition of the problem.

2.4 Limitations of Previous Approaches

Although there have been many earlier approaches to extending the evolutionary compu-
tation model to allow the emergence of coadapted subcomponents, no single approach pre-
serves the generality of the basic model while satisfactorily addressing the issues of problem
decomposition, interdependencies between subcomponents, credit assignment, population
diversity, and parallelism.

To summarize the limitations of these previous approaches, classifier systems address
several of the issues we have outlined, but are limited to the task of evolving rule-based
systems. They achieve this through centralized control structures that limit parallelism and
an economic rather than biological model. The Pitt Approaches—both for evolving rule-

29

based systems and artificial neural networks—avoid many of the issues we have discussed
by representing complete solutions as individuals rather than as a collection of interacting
subcomponents. However, they are not as modular as Michigan Approach systems such as
classifier systems, and thus are limited by the scale-up problem. Both the single population
and multiple population REGAL systems are limited to concept learning from preclassified
examples. The SANE system addresses most of the issues but is currently limited to the
evolution of artificial neural networks. The shaping technique and both the competitive
and cooperative coevolutionary models involve a hand-decomposition of the problem. The
island model and the approaches directed at multimodal function optimization only handle
the population diversity issue; and, in the case of the island model, the issue of parallelism.
The immune system model is sensitive to parameters that must be hand-tuned. The genetic
programming approaches are specific to the evolution of computer programs. Finally, all the
single gene-pool approaches, which include all but the coevolutionary models, are limited
to the evolution of subcomponents that share a common representation.

Chapter 3

ARCHITECTURE

In the previous chapter we discussed a number of important issues that must be addressed
if we are to extend the basic computational model of evolution to allow the emergence of
coadapted subcomponents. The issues include problem decomposition, interdependencies
between subcomponents, credit assignment, population diversity, and parallelism. We also
described a number of previous evolutionary approaches that address these issues to a
varying degree and pointed out some of their limitations. Our conclusion was that no single
approach satisfactorily addresses all the issues while maintaining the generality of the basic
evolutionary computation model.

In this chapter, we describe a macroevolutionary approach we call cooperative coevo-
lution, which combines and extends ideas from these earlier evolutionary approaches to
improve their generality and their ability to evolve interacting coadapted subcomponents
without human involvement. The chapter is organized in four main sections. In the first
section, we describe the basic cooperative coevolutionary model. Next, we discuss how it
addresses the above-mentioned issues. We then discuss some additional advantages of the
model such as speciation through genetic isolation, generality, and efficiency. The chap-
ter concludes with a simple instantiation of the model in which it is applied to the string
matching task described in example 2.4 beginning on page 16.

3.1 A Model of Cooperative Coevolution

In cooperative coevolution, we model an ecosystem consisting of two or more sympatric
species having an ecological relationship of mutualism. The species are encouraged to
cooperate with one another by rewarding them based on how well they work together to
solve a target problem. As in nature, the species are genetically isolated. We enforce genetic
isolation simply by evolving the species in separate populations. Although the species do
not interbreed, they interact with one another within a domain model.

The canonical cooperative coevolutionary algorithm is shown in figure 3.1 on the next
page. It begins by initializing a fixed number of populations—each representing a separate
species. We will describe later how this algorithm can be extended to enable an appropriate
number of species to emerge without being prespecified by the user. The fitness of each
member of each species is then evaluated by forming collaborations with individuals from
other species (see below). If a satisfactory solution to the target problem is not found
initially, all the species are further evolved. For each species, this consists of selecting

30

31

t = 0
FOR each species S

Initialize Pt(S) to random individuals from {1, 0}l

FOR each species S
Evaluate fitness of individuals in Pt(S)

WHILE termination condition is false BEGIN

FOR each species S BEGIN

Select individuals for reproduction from Pt(S) based on fitness
Apply genetic operators to reproduction pool to produce offspring
Evaluate fitness of offspring
Replace members of Pt(S) with offspring to produce Pt+1(S)
END

t = t + 1
END

Figure 3.1: Canonical cooperative coevolution algorithm

individuals to reproduce based on their fitness, for example, with fitness proportionate
selection; applying genetic operators such as crossover and mutation to create offspring;
evaluating the fitness of the offspring; and replacing old population members with the
new individuals. Although the particular algorithm shown is an extension of the canonical
genetic algorithm, other evolutionary algorithms could be extended in a similar fashion.

A more detailed view of the fitness evaluation of individuals in one of the species is
shown in figure 3.2 on the following page. Individuals are not evaluated in isolation. In-
stead, they are first combined in some domain-dependent way with a representative from
each of the other species. We refer to this as a collaboration because the individuals will
ultimately be judged on how well they work together to solve the target problem. There
are many possible methods for choosing representatives with which to collaborate. In much
of our work, the current best individual from each species is chosen as a representative;
however, in some cases this strategy is too “greedy” and other strategies may be preferable.
For example, a sample of individuals from each species could be chosen randomly, or a more
ecological approach in which representatives are chosen non-deterministically based on their
fitness could be used. Alternatively, a topology could be introduced and individuals who
share a neighborhood allowed to collaborate. The selection of a single, or at most a few,
representatives from each species avoids an exponential increase in the number of collabo-
rations that must be evaluated. The final step in evaluating an individual is to apply the
collaboration to the target problem and estimate the fitness. This fitness is assigned strictly
to the individual being evaluated and is not shared with the representatives from the other
species that participated in the collaboration.

A graphic illustration of the interaction that occurs between species is shown in fig-
ure 3.3 on page 33. From this figure one can see that the representatives only provide
context and do not receive any fitness evaluation. Although most of our implementations

32

Choose representatives from other species
FOR each individual i from S requiring evaluation BEGIN

Form collaboration between i and representatives from other species
Evaluate fitness of collaboration by applying it to target problem
Assign fitness of collaboration to i
END

Figure 3.2: Fitness evaluation of individuals from species S

of this model have utilized a synchronous pattern of interaction, this is certainly not nec-
essary. That is, each species could be evolved asynchronously on its own processor as long
as all the individuals belonging to a single species are evaluated within the same context.
In addition, it is not necessary for the representatives to be updated each evolutionary
cycle—further reducing the communication overhead of a parallel implementation of the
model. The figure shows the interaction between individuals occurring within the context
of a domain model and is nebulous about how the collaborations are actually constructed.
We have intentionally been vague on this point because collaboration construction depends
on what the species represent, which in turn depends on the problem domain. This can
best be illustrated with a few simple examples.

Example 3.1 Cooperative coevolution is to be used to maximize a function f(~x) of n
independent variables (Potter and De Jong 1994). The problem is hand-decomposed into n
species—one species for each independent variable. In other words, each species represents
alternative values for a particular variable. Interaction consists of selecting an individual
(variable value) from each species and combining them into a vector that is applied to the
target function. An individual is rewarded based on how well it maximizes the function
within the context of the variable values selected from the other species.

Example 3.2 Cooperative coevolution is to be used to develop a rule-based system of
behaviors for an autonomous robot (Potter, De Jong, and Grefenstette 1995). Each species
represents alternative rule sets for the implementation of a particular behavior, perhaps
evolved using a system such as SAMUEL described in chapter 2. Interaction consists of
selecting an individual (rule set implementing a behavior) from each species and using
them collectively to control the robot. We may also need to coevolve an arbitrator species
to integrate the behaviors. An individual is rewarded based on how well it complements the
behaviors selected from the other species to enable the robot to perform its function. We
do not know a priori what behaviors will enable the robot to do its job most effectively, so
we initialize a sufficient number of species randomly and let their specific roles emerge as a
result of evolutionary pressure.

In the previous two examples we either knew exactly how many species were required
or were able to place a reasonably small upper bound on the number. In other domains,
such as evolving artificial neural networks, we may have little or no prior knowledge to help

33

Population

Species-2

EAindividual

fitness

Population

Species-1

EA

Domain
Model

Population

Species-3

EA
representative

representative

Species-2 Evaluation

Population

Species-1

EA

Domain
Model

Population

Species-3

EA

representative

individual

fitness

Population

Species-2

EA

representative

Species-3 Evaluation

Population

Species-2

EA

representative
Population

Species-1

EA

Domain
Model

Population

Species-3

EA
representative

Species-1 Evaluation

individual

fitness

Figure 3.3: Model of species interaction

34

IF evolution has stagnated THEN BEGIN

FOR each species S BEGIN

Check contribution of Pt(S)
Remove S from ecosystem if unproductive
END

Initialize Pt(Snew) to random individuals from {1, 0}l

Evaluate fitness of individuals in Pt(Snew)
END

Figure 3.4: Birth and death of species

us make this determination. Ideally, we would like an appropriate number of species to be
an emergent property of cooperative coevolution. Figure 3.4 shows one possible algorithm
for achieving this through a model of the birth and death of species. The model works as
follows. If evolution stagnates, it may be that there are too few species in the ecosystem
from which to construct a good solution; therefore, a new species will be created and its
population randomly initialized. Conversely, if a species is unproductive, determined by the
contribution its individuals make to the collaborations they participate in, the species will
be destroyed. Stagnation can be detected by monitoring the quality of the collaborations
through the application of the inequality

f(t)− f(t−K) < C, (3.1)

where f(t) is the fitness of the best collaboration at time t, C is a constant specifying the
increase in fitness considered to be a significant improvement, and K is a constant specifying
the length of an evolutionary window in which significant improvement must be made.

Example 3.3 Cooperative coevolution is to be used to grow and train a two-layer feed-
forward neural network with x input units, y output units, and an unspecified number
of hidden units (Potter and De Jong 1995). Each species represents alternatives for one
of the hidden units in the network. Specifically, an individual consists of a set of genes
that code which input and output nodes a hidden unit is connected to, the weights on
its connections, and a threshold function. Interaction consists of selecting an individual
(hidden unit specification) from each species and combining them into a functional network
that is applied to a target problem. An individual is rewarded based on how well it functions
with the hidden units from the other species as a complete network. Initially, the ecosystem
contains a small number of species. Over time, the number of species will increase until a
network of sufficient size and complexity to handle the target problem can be constructed.
In this case both the number of hidden nodes and their function emerges as a result of
evolutionary pressure.

Before we move on to a discussion of how this model addresses the important issues
in evolving coadapted subcomponents introduced in chapter 2, one more point needs to

35

be made concerning terminology. In the traditional evolutionary computation model, a
generation is defined to be one pass through the select, recombine, evaluate, and replace
cycle shown in figure 2.1 on page 10. In biological terms, this is roughly equivalent to the
average time span between the birth of parents and their offspring. The length of this time
span depends on the species in question. In our computer model, the generational time
span could be measured in fitness evaluations, cpu cycles, or simply in “wall clock time”.
This creates a conceptual problem when we move from the traditional single population
model to the multiple population model of coevolution shown in figure 3.1 on page 31. If
we simply expanded the term generation to mean one pass through the select, recombine,
evaluate, and replace cycles of all the species being coevolved, the generational time span
as computed with any of the three metrics just mentioned would depend on the number of
species in the ecosystem. However, in nature the number of species in an ecosystem has
little to no effect on the time span between the birth of parents and their offspring.

To resolve this conflict, throughout this dissertation a distinction will be made be-
tween generations and ecosystem generations. We define a generation to be a complete
pass through the select, recombine, evaluate, and replace cycle of a single species while
an ecosystem generation is defined to be an evolutionary cycle through all species being
coevolved. This terminology is consistent with that previously used by Jones (1995). In
general, an ecosystem generation will consist of n times more fitness evaluations than a
generation, where n is the number of currently existing species. Given these definitions, the
index t shown in figure 3.1 counts the number of ecosystem generations that have occurred.

3.2 Issues Revisited

In chapter 2 we discussed a number of important issues that must be addressed if we are
to evolve coadapted subcomponents. These issues include problem decomposition, inter-
dependencies between subcomponents, credit assignment, and maintaining diversity in the
environment. We also pointed out that parallelism becomes a critical issue as we try to
solve increasingly difficult problems. We now revisit these issues and describe how they are
addressed by our model of cooperative coevolution.

3.2.1 Problem Decomposition

As was shown in the previous examples, the role that each species plays in the ecosystem is
an emergent property of our model of cooperative coevolution. Each species will focus on
exploration until it finds something unique to contribute to the collective problem solving
effort. Once it finds a niche where it can make a contribution, it will tend to exploit this
area. The better adapted a species becomes, the less likely it will be for some other species
to evolve individuals that perform the same function because they will receive no reward
for doing so.

We have also suggested one possible algorithm for enabling an appropriate number of
species in the ecosystem to emerge. This is accomplished as shown in figure 3.4 on the
preceding page by creating new species when evolution stagnates and eliminating species
that make no useful contribution. The emergent problem decomposition characteristics of
cooperative coevolution will be addressed in much greater detail in chapters 5 and 6.

36

3.2.2 Interdependencies Between Subcomponents

In Lewis Carroll’s (1871) classic children’s tale Through the Looking-Glass, the Red Queen
says to Alice:

Now, here, you see, it takes all the running you can do, to keep in the same
place. If you want to get somewhere else, you must run at least twice as fast as
that!

The biologist Van Valen (1973) hypothesized that in natural ecosystems with interdependen-
cies between species, the evolution of each species is being constantly driven by evolutionary
changes in the species it interacts with. He called this the Red Queen’s hypothesis because
each species must constantly adapt just to remain in parity with the others.

The Red Queen’s hypothesis also applies to species in our model of cooperative coevo-
lution. Species representing interdependent subcomponents are coevolved within a single
ecosystem where they can interact and coadapt. If a species does not make a “significant
contribution” to the problem-solving effort it will eventually be eliminated. What consti-
tutes a significant contribution from each species is constantly changing as a result of the
adaptation of the other species in the ecosystem. Interdependencies between species and
their constant adaptation to each other provide the engine of emergent problem decompo-
sition.

Given that species are interdependent, an important related issue is how to model the
patterns of interaction that occur between individuals of one species and those of another.
In our model we usually assume a greedy strategy in which the current best individual
from each species is chosen as the point of contact with all other species. That is, all the
individuals from one species will be evaluated within the context of the best individual
from each of the other species. We selected this strategy because it is simple and requires
a minimal number of collaborations between individuals to be evaluated. We will see in
chapter 4 that the strategy has some undesirable characteristics as well. In contrast, the
patterns of interaction between interdependent species in nature can be extremely complex.
Our greedy interaction strategy is not intended to be an accurate model of this process.
Rather, it simplifies the environment and enables us to focus here on other aspects of
coevolution. However, the design of more ecologically faithful computational models of the
interaction between species is clearly a crucial topic for future research.

3.2.3 Credit Assignment

Credit assignment occurs in our model of cooperative coevolution at two distinct levels: the
individual level and the species level. Credit assignment at the individual level must be
performed during each reproductive cycle as shown in figure 3.2 on page 32, and is used to
determine the likelihood that individuals will reproduce. Credit assignment at the species
level is only performed when evolution stagnates, and is used to determine whether any
species should be eliminated entirely from the ecosystem as shown in figure 3.4 on page 34.

When evaluating the fitness of individuals from one species, the representatives from the
other species remain fixed as shown in figure 3.3 on page 33. Therefore, the fitness differ-
ential that is used in making reproduction decisions is strictly a function of the individual’s
relative contribution to the problem-solving effort within the context of the other species at

37

some instant in time. Furthermore, by only assigning the fitness values to the individuals
of the species being evaluated and not to the representatives of the other species who are
providing context, the credit assignment problem is greatly simplified because there is no
need to determine which species contributed what.

On the other hand, to determining whether species should be removed from the ecosys-
tem when evolution stagnates, we do occasionally need to make a rough estimate of the
level of contribution each makes. Although the precise way in which species contributions
are computed is problem-specific, in some domains we can simply construct a collaboration
consisting of representatives from all the species and temporarily withdraw them one at a
time while measuring the change in fitness that occurs.

3.2.4 Population Diversity

Evolving genetically isolated species in separate populations eliminates the requirement
for indefinitely maintaining sufficient population diversity to support coadapted subcom-
ponents. The diversity within a species only needs to be maintained long enough for it to
discover a useful niche not being exploited by some other species and to survive the period
of rapid adaptation that takes place as a stable problem decomposition emerges. Generally,
standard genetic operators and reasonable population sizes provide enough diversity for this
to occur. When they are not sufficient, the creation of new species introduces additional
genetic material into the ecosystem.

In a sense, the problem of maintaining population diversity has been transformed into
a problem of maintaining diversity among the species in the ecosystem. While there is
considerable evolutionary pressure for a single population to converge, no such pressure
exists among genetically isolated species being evolved in separate populations. Instead,
rewarding the individuals from each species based on how well they collaborate with rep-
resentatives from the other species encourages them to make unique contributions to the
problem-solving effort. This ensures that the ecosystem will consist of a diverse collection
of species.

3.2.5 Parallelism

Our model of cooperative coevolution can take advantage of all the previous methods for
parallelizing evolution algorithms. This includes running slave processes on separate pro-
cessors to perform fitness evaluations, using the coarse-grain island model and distributing
the population of a species across a few processors while allowing occasional migration, or
using the fine-grain approach of distributing individuals belonging to a species across many
processors while allowing them to interact with one another using localized mating rules. In
addition, our model enables an additional coarse-grain method of parallelism, specifically,
assigning a separate processor to each species.

The advantage, with respect to parallelism, of evolving genetically isolated species in
separate populations is that each species can be evolved by its own semiautonomous evo-
lutionary algorithm. Communication between species is limited to an occasional broadcast
of representatives, and the only global control is that required to create new species and
eliminate unproductive ones. The reason this is advantageous can be explained by Amdahl’s

38

Law (Amdahl 1967), which places an upper limit on the amount of speedup achievable as a
function of the percentage of parallelizable code. Given the following definition of speedup:

S =
T(1)

T(N)
,

where T(N) is the time required to solve the problem given N processors, Amdahl’s Law
can be expressed as

max(S) =
N

βN + (1− β)
,

where N is the number of processors and β is the ratio of time spent executing paral-
lel code to total execution time (Lewis and Hesham 1992). By reducing the reliance on
centralized control structures and allowing the species to be evolved semiautonomously,
the algorithm spends more time evolving species in parallel and less time serially managing
that evolution—thus enabling speedup to approach more closely its absolute limit of 1.0. Of
course, Amdahl’s Law only applies when the semantics of the algorithm being parallelized
are held constant with respect to N .

3.3 Additional Advantages of the Model

3.3.1 Speciation Through Genetic Isolation

We have already discussed two important advantages of speciation through multiple ge-
netically isolated populations: the ease of maintaining diversity in the ecosystem and the
high degree of parallelization of the model that can be achieved. Two additional advan-
tages of speciation through multiple genetically isolated populations are the capability to
evolve species with heterogeneous representations simultaneously, and the elimination of
unproductive cross-species mating.

As we apply evolutionary computation to larger problems, the capability of coevolving
subcomponents with heterogeneous representations will become increasingly important. For
example, in developing a control system for an autonomous robot some components may
best be implemented as artificial neural networks, others as collections of symbolic rules,
and still others as parameter vectors. Multiple genetically isolated populations enable each
of these components to be represented appropriately. As long as the components are evolved
simultaneously in an environment in which they can interact, coadaptation is possible.

Regarding cross-species mating, imagine that our evolving autonomous robot is con-
trolled by a wide variety of specialized species. For example, individuals of one species may
implement a high-level planning component that prioritizes a list of tasks assigned to the
robot, while individuals of another species determine how much pressure to apply to a set
of manipulator jaws to enable the robot to pick up an object without crushing it. It is not
likely that mating individuals from these two species with one another will produce anything
viable. When individuals become highly specialized, mixing their genetic material through
cross-species mating will usually produce non-viable offspring, as is demonstrated in nature.
In natural ecosystems, the genetic distance between two species is highly correlated with
mating discrimination and the likelihood that if interspecies mating does occur the offspring
will either not survive or be sterile (Smith 1983). Although the specific conditions under

39

which speciation occurs are a matter of debate, clearly species differences are sustained over
time in large part due to this lack of interbreeding.

3.3.2 Generality

Nature shows us that evolution is the paragon of general-purpose problem solving, and it
is important to preserve this generality in our computational models of the process. The
model of cooperative coevolution is applicable to a wide range of decomposable problems.
Our focus in this dissertation is on solving problems as diverse as those from the domains of
function optimization, concept learning, and artificial neural network construction. In ad-
dition, the model is not limited to any particular representation or underlying evolutionary
algorithm. We will later demonstrate that the model can extend the usefulness of both ge-
netic algorithms and evolution strategies. It is even possible to mix evolutionary algorithms
in the same system, as in evolving one species having a binary string representation with a
genetic algorithm and coevolving another species having a real-valued vector representation
with an evolution strategy. The use of such heterogeneous coevolutionary algorithms is an
area for future research.

3.3.3 Efficiency

Along with the before-mentioned efficiency one can achieve by taking advantage of the high
degree of parallelism possible with the model, there is another important source of efficiency.
By evaluating individuals from one species within the context of a subset of individuals from
other species, the search becomes highly constrained.

A problem whose solution is decomposed into n interdependent subcomponents, each of
which is represented by a binary string of length k, will have a solution space of size (2k)n.
If we evaluate individuals from one species within the context of a single representative from
each of the other species, we constrain the search to a series of regions of size 2k. For exam-
ple, a problem consisting of five subcomponents, each represented by a 32-bit binary string,
would have a solution space size on the order of 1048. If each of these subcomponents were
represented as a species and evolved for 100 ecosystem generations1 under the constraint
just described, an upper bound on the order of 1012 would be placed on the size of the
solution space searched. This form of search space constraint is similar to the coordinate
strategy that has been commonly used in the field of traditional function optimization to
solve high-dimensional problems. Of course if the subcomponents are interdependent, we
are not guaranteed to find the global minimum or maximum when utilizing this form of
constraint (Schwefel 1995). The issue of constraining the search space will be explored in
greater detail in chapter 4.

3.4 A Simple Example

We conclude this chapter by instantiating the cooperative coevolutionary model and apply-
ing it to the simple string covering task described in example 2.4 beginning on page 16. A
complete listing of the Lisp program code for this instantiation is included in appendix A.

1Recall that an ecosystem generation is the time required for all the species to complete a single generation.

40

Recall that in the string covering task we are given a set of six binary strings called the
target set, and the goal is to find the best possible three-element set of matching strings
called the match set. The match strength between two strings is determined by summing
the number of bits in the same position with the same value. Here we use basically the
same target set as in the original example; however, to make the problem a little more
challenging we repeat the pattern of each of the four-bit strings to increase their lengths to
32 bits. Generalization is required to solve this problem since it is obviously impossible to
cover six distinct target strings completely with three match strings.

For this example, we choose to use a genetic algorithm to evolve each of the species and
we let each individual directly represent one of the 32-bit match strings; that is, we make
no distinction between the genotype and the phenotype of an individual. The populations
of each of the species are initialized randomly. We arbitrarily set the population size to
50, the genetic operators to two-point crossover at the rate of 0.6 and bit-flipping mutation
at a rate equal to the reciprocal of the chromosome length, and the selection strategy to a
scaled fitness proportionate scheme.

As in the original example, we decompose the problem into three subtasks, each con-
sisting of finding the best value for one of the three match strings. This is mapped into our
coevolutionary model by assigning a different species to each of the three subtasks. We add
a new species to the ecosystem each generation until all three subtasks are accounted for.
Since the problem specifies a match set of size three, there is no reason to further model
the creation of new species and the extinction of those that are non-viable. This is not
a complete hand-decomposition of the problem because we provide no information to the
system concerning which target strings each species should cover. We constrain the search
space by selecting only the current best individual from each species as its representative.

To evaluate the fitness of an individual from one of the species, we first form a three-
element match set consisting of the individual in question and the representatives from the
other two species. Next, the match strength between each string in the target set and each
string in the match set is computed. The following linear function, which simply sums the
bits in the same position with the same value, is used to determine the match strength
between two strings, x and y, of length l:

strength(~x, ~y) =
l
∑

k=1

{

1 if xk = yk

0 otherwise.
(3.2)

Although the match strengths of all possible pairs of strings in the two sets are computed,
only the largest match strength for each target string is retained. The final step in the
fitness computation is to average the retained strengths. Formally, the fitness equation is
as follows:

fitness =
1

n

n
∑

i=1

max(strength(~xi, ~y1), . . . , strength(~xi, ~ym)), (3.3)

where x is a target set element, y is a match set element, n is the target set length, and
m is the match set length. Two points need to be emphasized here. First, information
concerning which match string produced the strongest match for a particular target string
is not used in the fitness computation. We are only concerned with the strength of the
collaboration as a whole—not with who contributed what. Second, it may be that the

41

16

20

24

28

32

0 25 50 75 100

A
ve

ra
ge

 M
at

ch
 S

tr
en

gt
h

Generations

Figure 3.5: Average match score between target set and best collaborations

match string represented by the individual being evaluated does not produce the strongest
match for any of the strings in the target set; that is, it makes no contribution to the
problem-solving effort whatsoever. If this is the case, its fitness will simply reflect the
fitness of the representatives from the other two species. After the fitness values of all
members of a species are computed, the differences between the values reflect individual
contributions because everyone is evaluated within the same context.

The graph plotted in figure 3.5 shows the fitness of the collaboration formed by the
current best individual from each species at the end of each generation averaged over 100
runs. The expected fitness of a randomly initialized match string given a set of 32-bit
target strings is 16.0. The initial average match strength of 19.1 is slightly greater than
the expected value because it reflects the fitness of the best member of a population of 50
match strings. Recall that the ecosystem initially consists of a single species; therefore,
the initial match set contains only one element. As the figure shows, the fitness of the
collaborations quickly increases as the remaining two species are added to the ecosystem
over the course of the next two generations. Improvement then slightly slows but continues
to approach asymptotically a fitness of 28.0 until the final generation. Although the best
possible fitness is 32.0—produced when each 32-bit target string is matched perfectly—it
is clearly not possible to achieve this level when we only have three match strings to cover
six distinct target strings.

The graph plotted in figure 3.6 on the following page is generated only from the ini-
tial run and shows the amount each species is contributing to the problem-solving effort.
The individual contributions are computed to provide us with additional insight into the
macroevolutionary dynamics of the system. We emphasize that this information is not used

42

0

25

50

75

100

0 25 50 75 100

C
on

tr
ib

ut
io

n
P

er
ce

nt
ag

e

Generations

species 1
species 2
species 3

Figure 3.6: Percent contribution of each species to best collaborations

in any way by the evolutionary process. As in the previous graph, we produced this plot
by forming a collaboration consisting of the current best individual from each species at
the end of each generation and computing the match strength between the elements of the
target set and the members of the collaboration. To measure the contribution of one of
the species, we summed the subset of strengths for which it produced a better match than
either of the other two representatives. More formally and ignoring ties, the contribution
function is defined as follows:

contribution(~r) =
1

n

n
∑

i=1

{

strength(~r, ~yi) if best match
0 otherwise,

(3.4)

where r is the individual chosen to represent its species in the collaboration and ~yi is a string
from the n-element target set. In the actual contribution computation, ties were broken
randomly, although in practice they rarely occurred. The graph plots the contribution of
each species as a percentage of the total strength of the collaboration; therefore, the three
curves in figure 3.6 always sum to 100 percent. The figure clearly shows a period of relative
instability in the contribution made by each of the species during the early generations.
This is when the system is constructing a reasonably good problem decomposition, or using
evolutionary terminology, the period in which the species are acquiring stable niches. In
the particular run plotted, the contributions do not significantly change after generation
48. The emergent decomposition properties of the model of cooperative coevolution will be
studied in greater depth in chapters 5 and 6.

Chapter 4

ANALYSIS OF SENSITIVITY TO SELECTED PROBLEM

CHARACTERISTICS

In this chapter, we explore the robustness of our computational model of cooperative coevo-
lution with respect to selected problem characteristics that potentially will have a negative
effect on the performance of the model. We also suggest possible approaches to overcoming
any exposed difficulties. We defer the issue of determining an appropriate decomposition
until the next chapter and here assume a static hand-decomposition of the problem.

4.1 Selection of Problem Characteristics

Three characteristics of decomposable problems that we have identified as likely to have a
significant effect on the performance of cooperative coevolution are:

1. the amount and structure of interdependency between problem subcomponents,

2. the number of subcomponents resulting from a natural decomposition of the problem,
and

3. the degree of accuracy possible when evaluating the fitness of collaborations among
the subcomponents.

While these are certainly not the only characteristics capable of affecting the model, by
referring to the detailed description of cooperative coevolution in the previous chapter we
will now justify the choice of each for inclusion in an initial sensitivity analysis.

To understand the relevance of the first characteristic, recall from figure 3.2 on page 32
that each individual is evaluated by first forming a collaboration with representatives from
each of the other species in the ecosystem. If the species represent independent problem
subcomponents, the choice of partners in these collaborations is irrelevant—each species
might as well be evaluated in isolation. However, if the species are interdependent, evolving
one will warp the fitness landscapes associated with each of the other species to which
it is linked. Therefore, the amount and structure of this interdependency are likely to
play a major role in the performance of the model. The second characteristic is also an
obvious choice as the scalability of an approach is often an important consideration. From
figure 3.3 on page 33 it is clear that as the number of subcomponents (species) increases,
the patterns of interaction within the domain model will likely become more complex.

43

44

This increase in complexity may in turn have a significant impact on the performance of
cooperative coevolution. The third characteristic is perhaps a less obvious choice. Recall
from figure 3.1 on page 31 that a new representative is chosen from each species at the end of
every generation. The particular strategy used for choosing these representatives in most of
our experiments is simply to select the individual from each species with the highest fitness.
Any inaccuracy in evaluating the fitness of population members is compounded; first, in
the misallocation of reproductive cycles to weak members of the respective populations;
and second, in a poor choice of representatives, which will distort the evaluation of all the
collaborations the representatives participate in. Whether this will negatively affect on the
performance of the coevolutionary model is a question that we will answer later in this
chapter.

4.2 Methodology

It has become common practice in the field of evolutionary computation to compare al-
gorithms using large test suites. This methodology has been especially prevalent among
those whose focus is the application of evolutionary computation to function optimization;
see, for example, (Gordon and Whitley 1993). In turn, this has lead to arguments con-
cerning the merits of commonly used test functions and suggestions for building better test
suites (Whitley, Mathias, Rana, and Dzubera 1995; Salomon 1996). Although it is cer-
tainly important to understand the principles of designing good test functions, one should
not consider these functions simply as weights to be placed on a balance. If the balance
tips to the right, algorithm A is better than algorithm B; if it tips to the left, algorithm
B is better. The “no free lunch” theorem (Wolpert and Macready 1995) proves that when
comparing two search methods, no matter how many objective functions tip the balance
in favor of one approach, an equal number exist for tipping the balance the other way. A
consequence of this is that given all possible objective functions, the average performance
of any two search algorithms is identical. More formally, given a pair of algorithms a1 and
a2,

∑

f

Pr(~c | f,m, a1) =
∑

f

Pr(~c | f,m, a2), (4.1)

where ~c is a histogram of fitness values resulting from the evaluation of a population of m
distinct points generated by an algorithm, a, on some objective function, f . In words, the
equation states that the conditional probability of obtaining a particular histogram when
summed over all possible objective functions is exactly the same, regardless of the algorithm
used to generate the population. Therefore, attempting to design the perfect all-inclusive
test suite for determining whether one algorithm is “better” in a general sense than another
is futile. One algorithm only outperforms another when its biases with respect to the
search space better match the specific objective function being optimized. More properly,
when evaluating a new algorithm one should seek an understanding of the specific problem
characteristics that the algorithm will use to its advantage and those that will obscure,
inveigle, or obfuscate.

The methodology we adopt here is to perform a sensitivity analysis on the three charac-
teristics of decomposable problems identified above as being likely to have a major effect on
the performance of the coevolutionary model. For each characteristic, comparisons will be

45

made between a coevolutionary and a standard evolutionary algorithm that differ only in
whether they utilize multiple species. All other aspects of the algorithms are equal and are
held constant over each set of experiments. The standard evolutionary algorithm provides
a reference point from which to measure the amount of effect directly attributable to coevo-
lution. Through focused experimentation using tunable test functions chosen specifically
to emphasize these three characteristics, we hope to gain insight into the circumstances
under which they will have a negative impact on the performance of the model and how
any exposed difficulties may be overcome.

4.3 Sensitivity to Random Epistatic Interactions

The first characteristic we will investigate is the interdependency between problem subcom-
ponents. This characteristic is more complex than the other two. Not only do we need
to be concerned with the amount of interdependency, but its structure is also important.
By structure, we mean the relationship between fitness dependencies within the genotype
space. In the field of genetics these fitness dependencies are called epistatic interactions.
Technically, epistasis refers to the fitness linkage between multiple genes. Linkages can
occur between genes in the same species and between genes in two or more species.

Before we explain what we mean by random epistatic interactions, we first present an
example of the complex combination of linkages that often occurs among species in nature—
Batesian mimicry in African swallowtail butterflies (Turner 1977; Smith 1989). In Batesian
mimicry, one species of butterfly that is palatable will resemble another butterfly species
that is unpalatable. The palatable species Papilio memnon, for example, mimics other
unpalatable African species through the shape, color, and pattern of its wings, and its ab-
domen color. These characteristics are determined by a number of different genes within
the species. Linked genes such as these within a single species are collectively referred to as
a supergene. Of course, the fitness of P. memnon depends on genes controlling both the ap-
pearance and palatability of the butterfly species it mimics. As the frequency of P. memnon
in the population increases, the effectiveness of the mimicry decreases as predator species
begin to associate its appearance with a palatable rather than an unpalatable butterfly.
This reduces the fitness of both P. memnon and the truly unpalatable species it mimics.

The Batesian mimicry example makes an important point. The structure of epistatic in-
teractions in ecosystems from nature tends to be quite complex and difficult to understand.
In the case just described, there are many genes involved, linkages occur both within and
between the two species, and the actual result of the mimicry is sensitive to a variety of fac-
tors such as the population densities of the butterflies and the status of butterfly predators
sharing the ecosystem. As a result of this complexity, a random energy model has been used
to capture the statistical structure of such systems (Kauffman 1989; Kauffman and Johnsen
1991; Kauffman 1993). That is, if two genes are linked, the effect of that linkage on the
fitness of the organism will be random. We use the expression random epistatic interactions
when referring to this type of linkage. In other domains, the interdependencies between
problem subcomponents are more highly ordered. For example, in the field of real-valued
function optimization the interaction between variables often forms a geometrical lattice of
peaks and basins in the fitness landscape. These function variable interactions are analo-

46

gous to the epistatic interactions that occur between genes. In this section we investigate
random epistatic interactions and defer an investigation of highly ordered interactions until
section 4.4. It is likely that problem subcomponents from domains inspired by nature, such
as machine learning, will share the propensity of species from natural ecosystems to display
complex interdependencies best captured by a random energy model.

There is another type of structure in epistatic interactions that we are less interested
in. This is the relationship between linked genes and their position in the chromosome.
Kauffman (1989) studied two different possibilities: a model in which linked genes have a
random positional relationship, and one in which linked genes are always nearest neighbors.
He showed through experimentation using a hill climbing algorithm1 that it makes little
difference which of these models is used with respect to the mean fitness of local optima and
the length of adaptive walks from randomly chosen genotypes to local optima. Although we
do not know how severe an effect the positional relationship between linked genes will have
on the performance of evolutionary algorithms using position dependent operators such as
two-point crossover, given that all the models being compared in this chapter use the same
genetic operators, our assumption is that the relative performance differences attributable
to this characteristic will be minimal. Therefore, we do not address this issue further and
exclusively use the nearest neighbor gene linkage model in our experiments.

4.3.1 NK-Landscape Problem

The test problem we use in this experimental study of the effect of random epistatic inter-
actions is a search for the global optimum within the context of Kauffman’s (1989) tunable
NK model of fitness landscapes. This is a random energy model, similar to a spin glass
(Edwards and Anderson 1975), that is designed to capture the statistical structure of the
rugged multipeaked fitness landscapes that we see in nature. Kauffman’s motivation in
creating the NK model was the study of coevolution and the conditions under which Nash
equilibria will be attained. Nash equilibria are states in which all interacting species are
optimal with respect to each other (Nash 1951).

In the NK model, N represents the number of genes in a haploid chromosome and K
represents the number of linkages each gene has to other genes in the same chromosome.
An example of an NK model with N = 5 and K = 2 is shown in table 4.1. The linkages
are displayed in the top portion of the table. For the purpose of the nearest neighbor gene
linkage model, the chromosome forms a torus. Therefore, the gene at the first locus is linked
to the genes at the last locus and the second locus; the gene at the second locus is linked to
the genes at the first locus and the third locus; and so on. The bottom portion of the table
shows the fitness contribution of each locus as determined by the allele of the corresponding
gene and the alleles of the two genes to which it has linkages. The size of the contribution
table grows exponentially as the number of gene linkages increases. Specifically, given a
two-allele model, the table will have 2K+1 rows and N columns.

To compute the fitness of the entire chromosome, the fitness contribution from each

1Beginning with a randomly chosen genotype, the hill climbing algorithm successively moves to fitter
single-locus variants.

47

Table 4.1: NK-landscape model for N=5 and K=2

Linkages

locus1 locus2 locus3 locus4 locus5

Contributions

Substring locus1 locus2 locus3 locus4 locus5

000 .968 .067 .478 .910 .352
001 .933 .654 .021 .512 .202
010 .940 .204 .379 .793 .288
011 .267 .357 .128 .703 .737
100 .803 .915 .511 .762 .456
101 .471 .300 .613 .073 .498
110 .220 .041 .565 .698 .951
111 .917 .630 .605 .938 .143

locus is averaged as follows:

f(chromosome) =
1

N

N
∑

i=1

f(locusi),

where each locus fitness contribution, f(locusi), is selected from the appropriate row and
column of the table. The table entries are generated by drawing randomly from a uniform
distribution ranging from 0.0 to 1.0. In this example, each gene may occur as one of two
alleles—either a zero or a one. Therefore, given K = 2, all possible values of a gene tuple
formed from a target gene and the genes it is linked to are specified by the column of binary
substrings shown in the table. Take, for example, the gene at the second locus. If this
gene and both genes to which it is linked2 were all of allele zero, the contribution of the
second locus would be 0.067. If instead, the gene at the third locus was of allele one, the
contribution of the second locus would be 0.654. In other words, the contribution of the
second locus changes, even though the allele of the second gene remains the same.

Several observations can be made from Kauffman’s studies of the NK model. As K
increases, the number of peaks in the fitness landscape increases and the landscape becomes
more rugged. By rugged we mean that there will be a low correlation between the fitness and
similarity of genotypes, where the similarity metric used is Hamming distance. The extreme

2The gene at the second locus is linked to the genes at the first and third loci.

48

case of K = 0 produces a highly correlated landscape with a single peak, while the other
extreme case of K = N−1 produces a landscape that is completely uncorrelated and has very
many peaks. Another interesting observation is that as both N and K increase, the height
of an increasing number of fitness peaks falls towards the mean fitness. This phenomenon,
which Kauffman refers to as a “complexity catastrophe”, is a result of conflicting constraints
among the genes. From a function optimization perspective, searching for peaks with high
fitness in this case is analogous to looking for a needle in a haystack.

The NK model shown in table 4.1 on the preceding page only supports gene linkages
within a single chromosome. However, the complete NK model also supports the coupling
of fitness landscapes from multiple species. To accomplish this, Kauffman adds a third
parameter, C, that specifies the number of gene linkages between pairs of species (Kauffman
and Johnsen 1991). In our implementation, the first C genes from each species are the ones
chosen to affect other species. Therefore, if we add the parameter C = 3 to the example
above and introduce a second species, each gene of species A would be linked to its two
neighboring genes and the first three genes of species B. Similarly, each gene of species B
would be linked to its two neighboring genes and the first three genes of species A.

4.3.2 Experimental Results

Since we are using a two-allele model, the chromosomes of individuals whose phenotypes
are points on an NK landscape can be represented with binary strings of length N . As
in the string covering example described in section 3.4, we use a coevolutionary genetic
algorithm to evolve these individuals. In all experiments, we initialize the populations of
each species randomly, use a population size of 50, a two-point crossover rate of 0.6, a bit-
flipping mutation rate set to the reciprocal of the chromosome length, fitness proportionate
selection, and balanced linear scaling. Unless otherwise noted, fitness curves are generated
from an average of 100 runs.

We begin by investigating the effect of random epistatic interactions within a single
24-bit chromosome on a standard genetic algorithm. This is simply our coevolutionary
implementation restricted to a single species. The graph in figure 4.1 on the next page shows
the fitness of the best individual seen so far over a period of 500 generations for various
levels of epistasis ranging from none to moderate. A comparison between the graph and
the expected global optimum values3 shown in table 4.2 reveals that the genetic algorithm
easily finds the global optimum when epistasis is low. However, when epistasis is increased
to a moderate level by setting K to 7, adaptation slows dramatically.

In figure 4.2 on page 50 we compare the standard genetic algorithm with random search4

at the extremes of no epistasis (K = 0) and maximum epistasis (K = 23). While the ge-
netic algorithm is far superior to random search when epistasis is low, at the maximum
level random search actually outperforms genetic search. This should not be too surprising,
considering that the fitness landscape at the maximum level of epistasis is completely uncor-
related. Therefore, the primary bias of genetic search—the allocation of an exponentially

3These values were computed experimentally by enumerating the entire space of 100 different randomly
generated landscapes for each value of K. The 95-percent confidence ranges of all the expected optimum
values are within ±0.001 of the mean.

4Random search draws genotypes from a uniform distribution with replacement. In the figure, one
generation of random search performs the same number of evaluations as a generation of genetic search.

49

0.5

0.6

0.7

0.8

0 100 200 300 400 500

F
itn

es
s

Generations

K = 7
K = 3
K = 1
K = 0

Figure 4.1: Standard genetic algorithm applied to 24-bit NK landscape with various levels
of epistasis

Table 4.2: Expected global optimum of 24-bit NK landscapes

K Expected optimum

0 0.667
1 0.712
3 0.751
7 0.778
15 0.794
23 0.800

50

0.5

0.6

0.7

0.8

0 100 200 300 400 500

F
itn

es
s

Generations

standard GA
random search

standard GA
random searchK = 0

K = 23 {
{

Figure 4.2: Standard genetic algorithm and random search on 24-bit NK landscape with no
epistasis (K = 0) and maximum epistasis (K = 23)

increasing number of trials to observed regions of the solution space with above average
fitness—produces absolutely no benefit and wastes computational energy by increasing the
likelihood of reevaluating the same points. Another observation is that neither search al-
gorithm has come close to finding the expected global optimum of 0.800 at the maximum
level of epistasis after 500 generations (25,000 evaluations). We pointed out earlier that as
both N and K increase, the height of an increasing number of fitness peaks falls towards
the mean fitness, which in this case is 0.5. A consequence of this is that the landscape is
densely populated by average individuals. This and the fact that the solution space is of
size 224 explain why it is not likely that an individual with a fitness close to the global
optimum will be found in only 500 generations.

In the next set of experiments, we compare the effect of various levels of intraspecies
epistasis on the relative performance of a coevolutionary genetic algorithm and a standard
genetic algorithm. In this study, we simultaneously search for the optimum on two sepa-
rate 24-bit NK landscapes, which we will refer to as landscape A and landscape B. The
standard genetic algorithm represents solutions to this problem as a single 48-bit chromo-
some. Specifically, the first half of the genotype represents a point on landscape A, and
the second half of the genotype represents a point on landscape B. In contrast, the coevo-
lutionary genetic algorithm evolves a species of 24-bit individuals for landscape A and a
separate species of 24-bit individuals for landscape B. There are no interactions—epistatic
or otherwise—between individuals from the two species. Therefore, in a literal sense no
coevolution is occurring. The “coevolutionary” genetic algorithm in this case is equivalent
to running two non-communicating standard genetic algorithms in parallel.

51

0.5

0.6

0.7

0.8

0 100 200 300 400 500

F
itn

es
s

Generations

coevolution
standard GA

Figure 4.3: Coevolution and standard genetic algorithm on two uncoupled 24-bit NK land-
scapes with no epistasis (K = 0)

When there is no epistasis within or between species, as shown in figure 4.3, both
algorithms easily find the global optimum of both landscapes and are statistically equivalent
in performance. This also holds for a low level of epistasis within the species (K = 3) as
shown in figure 4.4. However, when intraspecies epistasis is increased to a moderate level
by setting K to 7 as shown in figure 4.5 on the next page, the performance advantage of
coevolution over the standard genetic algorithm becomes obvious. Continuing this trend,
when intraspecies epistasis is maximized by setting K to 23 as shown in figure 4.6, the
performance advantage of coevolution over the single chromosome model becomes even
more significant. A likely explanation for the superior performance of coevolution is that
genetic isolation and independence ensures the evaluation of individuals from one species
is not corrupted by the evaluation of individuals from the other species. When a single
chromosome represents points on both landscapes, as is the case with the standard genetic
algorithm, the high fitness of one point can easily be masked by its association with a point
on the other landscape having low fitness. This masking effect becomes more likely as
the probability of genetic operators changing a highly fit genotype into a weak genotype
increases with higher values of K.

In the final set of experiments in this section we investigate the effect of random epistatic
interactions between species. As in the previous study, we simultaneously search for the
optimum on two separate 24-bit NK landscapes. However, here we fix the intraspecies
epistasis at a moderate level by setting K to 7, and vary the C parameter that controls the
number of linkages each gene of one species will have to genes of the other species.

Once we add the additional complexity of linkages between species, the coevolutionary
genetic algorithm is no longer equivalent to running two non-communicating standard ge-

52

0.5

0.6

0.7

0.8

0 100 200 300 400 500

F
itn

es
s

Generations

coevolution
standard GA

Figure 4.4: Coevolution and standard genetic algorithm on two uncoupled 24-bit NK land-
scapes with low epistasis (K = 3)

0.5

0.6

0.7

0.8

0 100 200 300 400 500

F
itn

es
s

Generations

coevolution
standard GA

Figure 4.5: Coevolution and standard genetic algorithm on two uncoupled 24-bit NK land-
scapes with moderate epistasis (K = 7)

53

0.5

0.6

0.7

0.8

0 100 200 300 400 500

F
itn

es
s

Generations

coevolution
standard GA

Figure 4.6: Coevolution and standard genetic algorithm on two uncoupled 24-bit NK land-
scapes with maximum epistasis (K = 23)

netic algorithms in parallel. As the number of linkages between species increases, there is
a corresponding increase in the likelihood that one species will warp the fitness landscape
associated with the other as it is evolved. Therefore, if we evolve the species in isolation
and bring them together at some point in the future, we will usually see an abrupt drop in
fitness when they are merged. The probability of a fitness drop is a function of the amount
of linkage between species. This is illustrated graphically in figure 4.7 on the following page
for various levels of interspecies epistasis. With C set to only 4, the landscapes are warped
so severely that the fitness after merging the solutions drops nearly to 0.5, which is the
mean fitness of each landscape. These results were generated from the average of 200 runs
of two species evolved independently and merged after the completion of 500 generations.

In figures 4.8 through 4.11 beginning on the next page we compare the effect of increasing
levels of interspecies epistasis on the relative performance of a coevolutionary genetic algo-
rithm and a standard genetic algorithm by varying C from 2 to 16. As before, the standard
genetic algorithm represents solutions to this problem as a single 48-bit chromosome and
the coevolutionary genetic algorithm evolves a separate species of 24-bit individuals for each
landscape. From these figures we see that while increasing random epistatic interactions
between species clearly increases the problem difficulty, it has little effect on the relative per-
formance of the two models. Although we will see in the next section that this observation
does not necessarily hold when the epistatic interactions are highly ordered, it is nonetheless
an extremely important result given our hypothesis that problems from domains inspired
by nature are likely to have complex interdependencies between their subcomponents that
are characteristic of the random epistatic interactions between NK landscapes.

54

0.5

0.6

0.7

0.8

0 100 200 300 400 500

F
itn

es
s

Generations

independent evolution
C = 1 merged
C = 2 merged
C = 4 merged

Figure 4.7: Effect of optimizing coupled NK landscapes separately and merging the final
solutions

0.5

0.6

0.7

0.8

0 100 200 300 400 500

F
itn

es
s

Generations

coevolution
standard GA

Figure 4.8: Coevolution and standard genetic algorithm on two coupled 24-bit NK land-
scapes (K = 7 and C = 2)

55

0.5

0.6

0.7

0.8

0 100 200 300 400 500

F
itn

es
s

Generations

coevolution
standard GA

Figure 4.9: Coevolution and standard genetic algorithm on two coupled 24-bit NK land-
scapes (K = 7 and C = 4)

0.5

0.6

0.7

0.8

0 100 200 300 400 500

F
itn

es
s

Generations

coevolution
standard GA

Figure 4.10: Coevolution and standard genetic algorithm on two coupled 24-bit NK land-
scapes (K = 7 and C = 8)

56

0.5

0.6

0.7

0.8

0 100 200 300 400 500

F
itn

es
s

Generations

coevolution
standard GA

Figure 4.11: Coevolution and standard genetic algorithm on two coupled 24-bit NK land-
scapes (K = 7 and C = 16)

4.4 Sensitivity to Highly Ordered Epistatic Interactions

Now that we have an understanding of the effect of random epistatic interactions on the
coevolutionary model, we investigate highly ordered epistatic interactions. A domain where
we find highly ordered interactions between problem subcomponents is real-valued function
optimization. Specifically, we are referring to the interaction between function variables,
which often forms a geometrical lattice of peaks and basins in the fitness landscape. Because
function variables are analogous to genes, we will continue to use the biological term epistatic
interactions when referencing their interdependencies.

4.4.1 Coevolutionary Function Optimization

The application of evolutionary computation to function optimization has a rich history,
beginning with the initial evolution strategy research by Rechenberg (1964) whose work
was motivated by the need to solve difficult parameter optimization problems in the field of
aerodynamics. Much genetic algorithm research has also been motivated by the need to solve
difficult optimization problems. Although the original genetic algorithm work by Holland
(1975) was motivated instead by a desire to build adaptive systems, these algorithms for a
time became so closely coupled to the domain of function optimization that many began
thinking of them only in terms of how well they performed this task. Interestingly, a
paper titled “Genetic Algorithms are NOT Function Optimizers” was published by De Jong
(1993), whose 1975 dissertation was the catalyst of the genetic algorithm based function

57

optimization movement.
Given that a solution to a function optimization problem consists of a vector of n variable

values, a natural decomposition is to coevolve n species, each of which is composed of a
population of individuals representing competing values for a particular variable (Potter
and De Jong 1994). Cooperative coevolution begins by initializing a separate species for
each function variable. In our experiments, each individual consists of a 16-bit binary
string. The fitness of an individual is computed by combining it with a representative
from each of the other species, converting the binary strings in the resulting collaboration
to a vector of real values, and applying the vector to the target function. Initially, no
fitness information is available to intelligently choose the species representatives, so random
individuals are selected. However, once a population associated with a species has been
completely evaluated, the current best individual rather than a random individual is elected
to represent the species in future collaborations.

This method of evaluating the fitness of alternatives for a variable value represented by
individuals in one species by combining each of them with the current best variable values
from the other species is in effect searching along a line passing through the best point on
the fitness landscape found so far. As previously mentioned, this method of constraining the
search space is similar to the relaxation method used in traditional parameter optimization
(Southwell 1946; Friedman and Savage 1947). Although the method has some potential
problems as we will see in section 4.4.4, it gives us a starting point for future refinements.

The standard genetic algorithm we use for comparison simply represents the vector of n
variable values with a binary chromosome of length n× 16, and evolves alternative vectors
in a single population.

4.4.2 Function Separability

Closely related to the structure of epistatic interactions in function optimization is the notion
of separability. If an objective function of n variables is separable, it can be rewritten as a
sum of n single-variable objective functions (Hadley 1964). The general form of a separable
function is expressed by the following equation:

f(x1, . . . , xn) = g1(x1) + g2(x2) + · · ·+ gn(xn).

Using the coevolutionary model to solve a separable objective function is roughly equivalent
to running multiple non-communicating standard genetic algorithms in parallel, each of
which is responsible for evolving the optimum value for a single variable. This is quite
similar to the previous NK-landscape experiments in which there were no linkages between
species. In both cases, the partial objective functions can be solved independently.

The separability of a function can be destroyed through coordinate system rotation.
This idea was applied to a reevaluation of the suitability of genetic algorithms for function
optimization by Salomon (1996), who developed an algorithm for random rotations about
multiple axes. This algorithm produces massively non-separable functions from separable
ones. Salomon showed that standard genetic algorithms using low mutation rates in the
order of a single bit-flip per chromosome are implicitly performing the relaxation method;
and, that by destroying separability, the difficulty of the optimization task is increased sig-
nificantly. We present a Lisp implementation of the Salomon coordinate rotation algorithm
in appendix C and use it in our experiments below.

58

Although a determination of the actual likelihood of encountering problems as non-
separable as these in the “real-world” is beyond the scope of this dissertation, our suspicion
is that they are pathological. Nonetheless, they are important in exploring the robustness
of our computational model of cooperative coevolution.

4.4.3 Test Suite

We now describe the four test functions we will use for determining the sensitivity of co-
evolutionary and standard evolutionary models to highly ordered epistatic interactions. All
of these functions will be optimized with and without coordinate rotation, and have been
defined such that their global minimums are zero. The first three functions were selected
because their epistatic interactions form geometric lattices of a variety of sizes of peaks and
basins on their fitness landscapes. All three of these functions are separable. The fourth
is a non-separable function that was selected specifically because its interactions, although
ordered, neither form a lattice nor are aligned with the coordinate system.

The first function in the test suite was originally proposed by Ackley (1987) and later
generalized by Bäck and Schwefel (1993). It is defined as

f(~x) = −20 exp

−0.2

√

√

√

√

1

n

n
∑

i=1

x2
i

− exp

(

1

n

n
∑

i=1

cos (2πxi)

)

+ 20 + e,

where n = 30 and −30.0 ≤ xi ≤ 30.0. The global minimum of zero is at the point
~x = (0, 0, · · ·). At a low resolution the landscape of this function is unimodal; however,
the second exponential term covers the landscape with a lattice of many small peaks and
basins.

The second test function is a generalized version of a function proposed by Rastrigin
(1974). It is defined as

f(~x) = nA +
n
∑

i=1

x2
i −A cos(2πxi),

where n = 20, A = 3, and −5.12 ≤ xi ≤ 5.12. The global minimum of zero is at the point
~x = (0, 0, · · ·). The Rastrigin function is predominantly unimodal with an overlying lattice
of moderate-sized peaks and basins.

The third function in the test suite was proposed by Schwefel (1981) and is defined as

f(~x) = 418.9829n +
n
∑

i=1

xi sin

(

√

|xi|

)

,

where n = 10 and −500.0 ≤ xi ≤ 500.0. We have added the term 418.9829n to the
function so its global minimum will be zero, regardless of dimensionality. The landscape of
the Schwefel function is covered with a lattice of large peaks and basins. Its predominant
characteristic is the presence of a second-best minimum far away from the global minimum—
intended to trap optimization algorithms on a suboptimal peak. Unlike the previous two
functions, the best minimums of this function are close to the corners of the space rather
than centered. The global minimum occurs at the point ~x = (−420.9687,−420.9687, · · ·).

59

The final function in this test suite was proposed by Rosenbrock (1960) and was origi-
nally defined as

f(~x) = 100(x2 − x2
1)

2 + (1− x1)
2,

where −2.048 ≤ xi ≤ 2.048. The global minimum of zero is at the point (1, 1). We will be
optimizing an extended version of the Rosenbrock function proposed by Spedicato (1975)
that is defined as

f(~x) =

n/2
∑

i=1

[

100(x2i − x2
2i−1)

2 + (1− x2i−1)
2
]

,

where n = 20. Unlike the other three functions in this test suite, the landscape of the
Rosenbrock function is not covered by a lattice of peaks and basins. Rather, the function
is characterized by an extremely deep valley whose floor forms a parabola x2

1 = x2 that
leads to the global minimum. Given the nonlinear shape of the valley floor, a single ro-
tation of the axes does not make the problem significantly easier, and the function should
be relatively invariant to the type of coordinate system rotation we perform here. The
function was designed by Rosenbrock to test his method of successive coordinate rotation
that continuously tracks a curved ridge or valley.

For plots of two-dimensional versions of all four of these test functions, see appendix B.

4.4.4 Experimental Results

In all experiments, we initialize the populations of each species randomly, use a popula-
tion size of 100, a two-point crossover rate of 0.6, a bit-flipping mutation rate set to the
reciprocal of the chromosome length, fitness proportionate selection, and balanced linear
scaling. Unless otherwise noted, fitness curves are generated from an average of 50 runs,
and represent the function value produced from the best set of variable values found so far.

The graph in figure 4.12 on the following page shows the result of optimizing the Ackley
function over a period of 500 generations with and without coordinate rotation. From the
coevolution fitness curves, one can clearly see an initial period of slow adaptation as each
of the species is successively evaluated within the context of a random individual from the
remaining unevaluated species and the best individual from those already evaluated. The
Ackley function being optimized here has 30 variables, and thus 30 species are coevolved;
therefore, this initial phase lasts 30 generations. Once every species in the ecosystem has
been evaluated at least one time, the optimization rate of cooperative coevolution dramat-
ically increases and is far superior to the standard genetic algorithm when the epistatic
interaction lattice is aligned with the coordinate system. However, the performance of
the coevolutionary model is severely degraded by randomly rotating the coordinate system
about multiple axes. A similar pattern is seen for the coevolutionary model when applied
to the Rastrigin and Schwefel functions in figures 4.13 and 4.14.

The performance degradation of the coevolutionary model may be explained by its
susceptibility to becoming frozen in Nash equilibrium. Recall that Nash equilibrium refers
to a state in which all interacting species are optimal with respect to each other. This
particular coevolutionary implementation is susceptible because it constrains the search
space by adapting each species within the context of the current best individual from the
others. When the function being optimized is separable—as the Ackley, Rastrigin, and

60

0

5

10

15

20

0 100 200 300 400 500

F
itn

es
s

Generations

standard GA
coevolution

standard GA
coevolutionrotated {

Figure 4.12: Sensitivity of coevolution and standard genetic algorithm to coordinate rotation
of Ackley function

0

25

50

75

100

125

150

0 100 200 300 400 500

F
itn

es
s

Generations

standard GA
coevolution

standard GA
coevolutionrotated {

Figure 4.13: Sensitivity of coevolution and standard genetic algorithm to coordinate rotation
of Rastrigin function

61

0

500

1000

1500

2000

2500

0 100 200 300 400 500

F
itn

es
s

Generations

standard GA
coevolution

standard GA
coevolutionrotated {

Figure 4.14: Sensitivity of coevolution and standard genetic algorithm to coordinate rotation
of Schwefel function

Schwefel functions are—the only Nash equilibrium point is the global optimum. However,
by rotating the coordinate system such that all variables are interdependent, we introduce
a Nash equilibrium point at each local optimum, that is, at the bottom of each basin
in the lattice. When only some of the variables are interdependent, as is the case in the
experiment described here, each independent variable represents a path of escape. However,
an optimization algorithm will again be susceptible to becoming frozen in Nash equilibrium
when the independent variables have achieved their globally optimum values. Of course
when all the dimensions are considered, this may still represent a point far from the true
global optimum.

The standard evolutionary model is not as susceptible to Nash equilibria because mul-
tiple variables can be changed simultaneously. As a result, the performance degradation
seen in this model due to coordinate system rotation takes a somewhat different form from
that seen in the coevolutionary model. Specifically, the amount of degradation appears
to be correlated with the size of the suboptimal basins covering the surface. Recall that
the Ackley fitness landscape is dominated by a unimodal component and has an overlying
lattice of small peaks and basins (see figure B.1 on page 145). Furthermore, the unimodal
component is centered in the search space—making it rotation-invariant. The standard
evolutionary model is able to adapt to this unimodal component without being excessively
mislead by the lattice; therefore, there is not much degradation in performance due to co-
ordinate system rotation. This can be clearly seen in figure 4.12 on the facing page. The
Rastrigin function is similar; however, the sizes of the basins in its lattice are considerably
larger relative to the unimodal component. One can see from figure 4.13 a corresponding
increase in rotation-induced degradation. Unlike the first two functions, the Schwefel func-

62

tion has no unimodal component, and its fitness landscape is completely dominated by a
lattice of large peaks and basins. As might be predicted, one sees a severe rotation-induced
performance degradation in figure 4.14.

For completeness, one additional point needs to be made concerning the Schwefel func-
tion. Since its best minimums are located near the corners of the fitness landscape, rotation
can easily move them outside the space under consideration. Since the coordinate rota-
tions in this experiment are random, there will typically be a different post-rotation global
optimum value for each run performed. The precise effect this has on the minimum post-
rotation fitness shown in figure 4.14 has not been computed. However, based on the shape
of the Schwefel landscape plotted in figure B.3 on page 147, we assume the effect is minimal.
This is not an issue with the first two functions because their global optimum values are
centered in the space and consequently are not affected by rotation.

Finally, the graph in figure 4.15 on the facing page shows the result of applying coevolu-
tion and the standard evolutionary model to the task of optimizing the Rosenbrock function.
Recall that the Rosenbrock fitness landscape is not structured as a lattice. Instead, it is
dominated by a deep valley whose floor forms a parabola that leads to the global minimum.
Due to the curved shape of the valley, we speculated earlier that it should be relatively
invariant to the type of coordinate system rotation we perform here. As expected, here we
see much less of a rotation-induced performance degradation with the coevolutionary model
than we saw in the previous three graphs. After about 100 generations, the post-rotation
performance for coevolution is actually comparable to the pre-rotation performance for the
standard genetic algorithm. This is an important result because it shows that it is not
enough simply to consider variable interdependency when determining the suitability of an
optimization method. One must also roughly classify the interdependency structure. We
will return to the Rosenbrock function in section 4.5.

Alternative Collaboration Strategies

Given the susceptibility of the coevolutionary model to becoming frozen in Nash equilibrium
due to its greedy collaboration strategy, the investigation of alternative methods for forming
collaborations between species is clearly an important topic for future research. Although
we defer a detailed study of this topic, we show in figure 4.16 on the next page the result
of optimizing the Ackley function with a slightly less greedy strategy. When using the
alternative strategy, there is a dramatic decrease in susceptibility to Nash equilibria.

Specifically, the less greedy interaction strategy is to evaluate each individual within the
context of two collaborations. The first collaboration is formed as in the greedy method;
that is, a vector of variable values is constructed that consists of the value represented
by the individual being evaluated and the current best variable value from each of the
other species. The second collaboration is constructed from the individual being evaluated
and random individuals from each of the other species. Both vectors are then applied to
the objective function, and the better of the two results is taken to be the fitness of the
individual being evaluated. Our claim is not that this less greedy method is the “right”
collaboration strategy to use, but rather that there is evidence to warrant further study of
alternative methods. We will revisit this topic in chapter 7 when discussing directions for
future research.

63

0

50

100

150

200

0 50 100 150 200

F
itn

es
s

Generations

standard GA
coevolution

standard GA
coevolutionrotated {

Figure 4.15: Sensitivity of coevolution and standard genetic algorithm to coordinate rotation
of extended Rosenbrock function

0

5

10

15

20

0 100 200 300 400 500

F
itn

es
s

Generations

standard GA
greedy coevolution

less greedy coevolution

Figure 4.16: Effect of a less greedy collaboration strategy on the optimization of the rotated
Ackley function

64

4.5 Sensitivity to Dimensionality

When faced with a problem of only a few variables we can often find the optimum simply
by taking partial derivatives and solving the resulting system of equations. However, as
the dimensionality of the problem increases, this becomes difficult, if not impossible, even
with the most powerful computers. As a result, we often must resort to the use of heuristic
methods, of which evolutionary algorithms are an example, that are not guaranteed to
find the global optimum. In his classic book on dynamic programming, mathematician
Richard Bellman (1957) refers to the difficulties associated with optimizing functions of
many variables as the “curse of dimensionality”.

This “curse” is not restricted to the domain of function optimization. When we build
computational models of biological systems or explore the domain of artificial intelligence we
often experiment within the confines of an extremely simplified universe; see, for example,
(Thrun et al. 1991). Clearly, it is important to be concerned with the effect of an increase
in scale on these models and techniques. In the domain of artificial intelligence, a number of
researchers have been focusing on the issue of scalability. Three examples include the work of
Doorenbos (1994) in the area of rule-based systems, who has successfully improved the Rete
match algorithm5 to handle large collections of over 100,000 rules with little degradation
in performance; the work of Lenat (1995) in the area of knowledge representation, who
for over a decade has been working on a system called CYC that currently includes a
database of several million “commonsense axioms”; and the work of de Garis (1996) in the
area of artificial neural networks, whose stated goal for the year 2001 is the construction of
“artificial brains with a billion neurons”.

In this section, we study the effect of increasing dimensionality on cooperative coevo-
lution. We briefly discussed the advantages of the model with respect to parallelism in
section 3.2.5. However, the facility for constructing a highly parallel coevolutionary model
of a problem only partially addresses scalability. One must also be concerned with the
increase in complexity of interaction among subcomponents that occurs as a result of an
increase in scale. We defer a detailed study of a parallel implementation of the model and
concentrate on the complexity issue here.

4.5.1 Test Suite

We will use two test functions in our experiments for determining the sensitivity of the
coevolutionary and standard evolutionary models to an increase in dimensionality. As in
the previous section, these functions have been defined such that their global minimums
are zero. One of the primary considerations in selecting the two functions was that they
represent the class of separable and non-separable functions respectively.

The first function in the test suite is the sphere model—a very simple quadratic with
hyperspherical contours defined as

f(~x) =
n
∑

i=1

x2
i ,

5The Rete match algorithm is designed to perform efficient pattern matching through the use of a dis-
crimination network called a Rete net (Forgy 1982).

65

where −5.12 ≤ xi ≤ 5.12. We vary the dimensionality of this function from 10 to 80. The
global minimum of zero is at the point ~x = (0, 0, · · ·). This function has been used previously
in the development of evolution strategy theory (Rechenberg 1973), and in the evaluation of
genetic algorithms as part of the De Jong test suite (De Jong 1975). It exemplifies the class
of separable functions that have proven to be easily optimized by evolutionary computa-
tion. The second function in this test suite is the extended Rosenbrock function previously
described in section 4.4.3. As with the sphere model, we vary its dimensionality from 10 to
80. Two-dimensional versions of both of these functions are plotted in appendix B.

4.5.2 Experimental Results

As in the study on highly ordered epistatic interactions, in all experiments we initialize the
populations of each species randomly, use a population size of 100, a two-point crossover
rate of 0.6, a bit-flipping mutation rate set to the reciprocal of the chromosome length,
fitness proportionate selection, and balanced linear scaling. All fitness curves are generated
from an average of 50 runs and represent the function value produced from the best set of
variable values found so far.

The graphs in figure 4.17 on the following page show the result of varying the dimen-
sionality of the sphere model. The top graph was generated from optimization runs on
functions of 10 and 20 variables, and the bottom graph was generated from functions of 40
and 80 variables. Although the graphs have different scales for clarity, a 1:1 aspect ratio
is maintained in both to facilitate a direct comparison. The graphs show the characteris-
tic gradually increasing rate of adaptation by the coevolutionary model as the species are
initially evaluated. This is followed by a period of rapid adaptation in which the coevo-
lutionary model performance far surpasses the performance of the standard evolutionary
model. Although the optimization task clearly becomes more difficult as the dimensional-
ity of the problem increases, the relative performance of the two models on this separable
function appears not to be significantly affected.

Next, the same experiment is performed with the non-separable extended Rosenbrock
function. In the extended Rosenbrock function, each variable has a symmetric dependency
link with one other. Specifically, variables x1 and x2 are interdependent; variables x3 and
x4 are interdependent; and so on. Therefore, when a Rosenbrock function of n variables is
optimized with an n-species coevolutionary model, there will be n epistatic interactions in
the ecosystem. In other words, the epistatic interactions increase linearly with dimension-
ality. Instead of this relationship reducing the efficiency of coevolution when dimensionality
is increased as one might expect, figure 4.18 on page 67 shows that there is a corresponding
increase in the performance of the coevolutionary model relative to the standard evolu-
tionary model. When the low communication overhead associated with evolving species on
multiple processors is taken into account, these graphs provide strong evidence that the
coevolutionary model could be effectively applied to extremely large problems.

66

0

20

40

60

80

100

0 20 40 60 80 100

F
itn

es
s

Generations

standard GA
coevolution

standard GA
coevolutionn = 20

n = 10 {
{

0

100

200

300

400

500

0 100 200 300 400 500

F
itn

es
s

Generations

standard GA
coevolution

standard GA
coevolutionn = 80

n = 40 {
{

Figure 4.17: Sensitivity of coevolution and standard genetic algorithm to changes in dimen-
sionality of sphere model

67

0

40

80

120

160

200

0 40 80 120 160 200

F
itn

es
s

Generations

standard GA
coevolution

standard GA
coevolutionn = 20

n = 10 {
{

0

100

200

300

400

500

0 100 200 300 400 500

F
itn

es
s

Generations

standard GA
coevolution

standard GA
coevolutionn = 80

n = 40 {
{

Figure 4.18: Sensitivity of coevolution and standard genetic algorithm to changes in dimen-
sionality of extended Rosenbrock function

68

4.6 Sensitivity to Noise

Evolutionary algorithms have been shown to be somewhat resistant to the effect of noise in
the fitness evaluation procedure. As a result, when the fitness evaluation is computationally
expensive it may be better to do less accurate evaluations because this will enable one to
adapt the population over a greater number of generations (Grefenstette and Fitzpatrick
1985; Fitzpatrick and Grefenstette 1988). The primary negative effect of noise on the stan-
dard evolutionary model is the misallocation of reproductive cycles to weak members of the
population. Our hypothesis is that this effect will be compounded in the coevolutionary
model because it may lead to a poor choice of species representatives, which in turn will
distort the evaluation of all the collaborations the representative participates in. This sug-
gests that the coevolutionary model may be less suitable for problems with noisy objective
functions.

In this section we investigate the effect of noise by applying both coevolution and the
standard evolutionary model to the task of function optimization in an environment where
the amount of fitness evaluation noise can be varied.

4.6.1 Test Suite

As in the dimensionality study, we use separable and non-separable test functions in this
sensitivity analysis. The test functions are defined such that their global minimums are
zero.

The separable stochastic function in this test suite was proposed by De Jong (1975) for
the performance evaluation of “genetic adaptive plans”. The function is a high-dimensional
unimodal quadratic with Gaussian noise defined as

f(~x) =
n
∑

i=1

ix4
i + Gauss(0, σ),

where n = 30 and −1.28 ≤ xi ≤ 1.28. We vary the standard deviation of the Gaussian
distribution from 1.0 to 8.0. With the noise filtered out, the global minimum of zero is at
the point ~x = (0, 0, · · ·). For plots of this function with and without noise, see appendix B.

The non-separable stochastic function in this test suite is the extended Rosenbrock
function described in section 4.4.3 with an additional Gaussian noise component defined as

f(~x) =

n/2
∑

i=1

[

100(x2i − x2
2i−1)

2 + (1− x2i−1)
2
]

+ Gauss(0, σ),

where n = 30 and −2.048 ≤ xi ≤ 2.048. As with the stochastic De Jong function, we vary
the standard deviation of the Gaussian distribution from 1.0 to 8.0.

4.6.2 Experimental Results

As before, we initialize the populations of each species randomly, use a population size of
100, a two-point crossover rate of 0.6, a bit-flipping mutation rate set to the reciprocal
of the chromosome length, fitness proportionate selection, and balanced linear scaling. All

69

σ = 8.0

σ = 4.0

σ = 1.0

{

{
{

0

20

40

60

80

100

120

0 25 50 75 100

F
itn

es
s

w
ith

 N
oi

se
 R

em
ov

ed

Generations

standard GA
coevolution

standard GA
coevolution

standard GA
coevolution

Figure 4.19: Sensitivity of coevolution and standard genetic algorithm to changes in the
standard deviation of noise in stochastic De Jong function

fitness curves are generated from an average of 50 runs and represent the noise-free function
value produced from the best set of variable values found so far. Although the noise has
been filtered out of the fitness curves to more accurately show the proximity of the evolved
solutions to the true optimum, these filtered fitness values were not available to the two
evolutionary systems; that is, only the noisy evaluations were used for the allocation of
trials.

The graph in figure 4.19 shows the result of varying the standard deviation of the noise
in the stochastic De Jong function. The experiment was run with standard deviations of
1.0, 4.0, and 8.0. Although the coevolutionary model is able to handle a low level of noise, a
degradation in its performance can clearly be seen in the graph as the noise is increased. As
predicted, a comparison with the fitness curves generated by the standard genetic algorithm
reveals that this particular coevolutionary implementation has more difficulty than the
standard model when optimizing objective functions with a high level of noise. High levels
of noise in the non-separable stochastic function produced a similar pattern of performance
degradation as shown in figure 4.20 on the next page.

It is encouraging that the coevolutionary model is able to handle low levels of noise in the
fitness evaluation of collaborations without difficulty. Although overcoming higher levels of
noise as in the experiments described here may require multiple fitness evaluations to reduce
the amount of uncertainty, we do not consider this a major problem. Furthermore, the
difficulties are a reflection of our particular implementation; not of coevolution in general.
Almost certainly, alternative collaboration strategies could be found that have a higher
resistance to the negative effect of noisy fitness evaluations.

70

0

40

80

120

160

200

0 40 80 120 160 200

F
itn

es
s

w
ith

 N
oi

se
 R

em
ov

ed

Generations

standard GA
coevolution

standard GA
coevolution

standard GA
coevolutionσ = 8.0

σ = 4.0

σ = 1.0

{

{
{

Figure 4.20: Sensitivity of coevolution and standard genetic algorithm to changes in the
standard deviation of noise in stochastic Rosenbrock function

4.7 Summary

In summary, this chapter performed a sensitivity analysis on a number of characteristics of
decomposable problems likely to have an impact on the performance of the coevolutionary
model. The characteristics include the amount and structure of interdependency between
problem subcomponents, which we characterized as epistatic interactions; the dimensional-
ity or scale of the problem; and the amount of noise in the fitness evaluations. Our goal was
to gain insight into the circumstances under which these characteristics will have a negative
impact on the performance of the model and how any exposed difficulties may be overcome.
This was accomplished using tunable test functions chosen specifically to measure the effect
of the target characteristics.

In section 4.3 we described Kauffman’s tunable NK model of fitness landscapes, which
is designed to capture the statistical structure of the rugged multipeaked fitness landscapes
seen in nature. We demonstrated that as the level of epistatic interactions between genes
within a chromosome increases, thus decreasing the correlation between genotype Hamming
distance and fitness, it becomes increasingly difficult for evolutionary computation to find
highly fit points on the landscape. However, there is a corresponding increase in the perfor-
mance of cooperative coevolution relative to the performance of the standard evolutionary
model. What is more important, we showed that an increase in the random epistatic inter-
actions between species has little effect on the relative performance of the two models. This
has positive implications for the applicability of cooperative coevolution to the solution of
a broad class of problems with complex interdependencies between subcomponents.

71

Next, in section 4.4 we characterized the structure of epistatic interactions that often
occur in the domain of real-valued function optimization as highly ordered. Closely related
to the structure of epistatic interactions is the notion of function separability. Many prob-
lems from the domain of function optimization are separable; and, due to biases in both
our coevolutionary model and the standard evolutionary model, separable functions can
be effectively optimized with these methods. However, by making the functions massively
non-separable through coordinate system rotation, the difficulty of the optimization task is
increased significantly. When the structure of the interactions forms a geometrical lattice,
rotation negatively affects the coevolutionary model more than the standard evolutionary
model. This is likely due to the greedy collaboration strategy used, which makes the co-
evolutionary model highly susceptible to becoming frozen in Nash equilibrium. However,
rotation degrades the performance of the coevolutionary model much less when the inter-
actions produce a landscape of curved ridges and valleys rather than a lattice of peaks
and depressions. We suggested that further research into alternative strategies for forming
collaborations is warranted.

In section 4.5 the scalability of the coevolutionary model was investigated. Experi-
ments were performed on an easy separable function and on a more difficult non-separable
function. While all the separable function variables were independent, the number of inter-
dependencies between variables in the non-separable function increased at the same rate as
the number of variables. Although an increase in dimensionality of the separable function
had little effect on the relative optimization performance of the coevolutionary and stan-
dard evolutionary models, surprisingly, the performance of coevolution increased relative to
the standard model when the dimensionality of the non-separable function was increased.
This somewhat counter-intuitive but encouraging result suggests that coevolution may be
suitable for the solution of extremely large problems; especially when one considers the
potential for parallelizing the model.

In the final section, the sensitivity of coevolution to noise in the evaluation function was
investigated. Again, experiments were performed on both a separable and a non-separable
function. In optimizing both functions, the coevolutionary model was resistant to low levels
of noise. However, its performance degraded faster than the standard evolutionary model
as the level of noise was increased. The negative effect of noise on coevolution appears to be
compounded. First, there is an initial misallocation of reproductive cycles to weak members
of the population. This in turn can lead to a poor choice of species representatives, which
distorts the evaluation of all the collaborations in which the representatives participate. We
emphasize that this is a reflection of our particular implementation; not of coevolution in
general. Almost certainly, alternative collaboration strategies could be found that have a
higher resistance to the negative effect of noisy fitness evaluations.

Chapter 5

BASIC DECOMPOSITION CAPABILITY OF THE

MODEL

One of the primary issues that must be addressed if a complex problem is to be solved
through the evolution of coadapted subcomponents is decomposition; that is, how to deter-
mine an appropriate number of subcomponents and the precise role each will play. Earlier
in this dissertation we made a number of claims concerning the ability of cooperative coevo-
lution to address adequately the issue of problem decomposition. However, up to this point
all of our experiments have involved a static hand-decomposition of the problem. In this
chapter we will show that problem decomposition is an emergent property of cooperative
coevolution.

Many task-specific methods exist for finding good problem decompositions. In chapter 2
we described a number of problem decomposition methods that have been previously used
in the field of evolutionary computation. For example, classifier systems utilize a complex
bidding mechanism based on a micro-economy model to decompose the problem into a
collection of coadapted rules, while other evolutionary systems simply hand-decompose
the problem. Examples of task-specific methods that have been used in non-evolutionary
systems include statistical approaches and techniques utilizing symbolic logic.

In contrast to these earlier problem decomposition techniques, cooperative coevolution
takes a task-independent approach in which the decomposition emerges purely as a result of
evolutionary pressure. That is, good decompositions have a selective advantage over poor
decompositions. The goal of this chapter is to take an initial step in determining whether
evolutionary pressure alone is sufficient for producing good decompositions by exploring the
basic capability of the model to perform this task.

In the following empirical analysis we will describe four experiments—each designed to
answer a specific question concerning the ability of cooperative coevolution to decompose
problems. The questions are as follows:

• Will a collection of species locate multiple environmental niches and work together to
cover them?

• Will each species evolve to an appropriate level of generality?

• Will species adapt to changes in the environment?

• Will the occasional creation of new species and the elimination of unproductive ones
induce the emergence of an appropriate number of species?

72

73

5.1 String Covering Problem

To provide a relatively simple environment in which the emergent decomposition properties
of cooperative coevolution can be studied, we return to the string covering problem first
described in example 2.4 beginning on page 16. Recall that the goal is to evolve a set of
binary strings that matches a set of target strings as closely as possible. The match strength
between two strings is computed by summing the number of bits in the same position with
the same value. We refer to the set of evolving strings as the match set and the target
strings as the target set. The fitness of a particular match set is computed by averaging the
maximum match strengths produced for each target string as described in equation 3.3 on
page 40.

Along with providing a common framework for the four experiments comprising this
empirical analysis, string covering is an important application in its own right. One reason
for its importance is that it can be used as the underlying mechanism for modeling a number
of complex processes from nature, for example, the discrimination between self and non-self
that occurs within the vertebrate immune system. We will explore the connection between
string covering and the immune system in detail in chapter 6.

5.2 Evolving String Covers

Each of the four experiments comprising this analysis will involve applying a cooperative
coevolutionary genetic algorithm, similar to the implementation described in at the end of
chapter 3, to the string covering problem just described. Each species in the ecosystem
contributes a single string to the match set. In evaluating the individuals from one species,
each will collaborate with the current best individual from each of the other species in the
ecosystem. In other words, a match set will consist of a single individual from the species
being evaluated, and the current best individual from each of the other N−1 species. Since
the individuals being evolved are binary strings, no distinction needs to be made between
their genotypes and phenotypes.

In all experiments, we initialize the populations of each of the species randomly, use
a population size of 50, a two-point crossover rate of 0.6, a bit-flipping mutation rate set
to the reciprocal of the chromosome length, fitness proportionate selection, and balanced
linear scaling.

5.3 Locating and Covering Multiple Environmental Niches

The first question we seek to answer is,

Will a collection of species locate multiple environmental niches and work to-
gether to cover them?

In a previous study by Forrest et al. (1993), an experiment was performed demonstrating
the ability of a single-population genetic algorithm using emergent fitness sharing to detect
common schemata in a large collection of target strings. By schemata we are referring
to string templates consisting of a fixed binary part and a variable part often designated

74

by the symbol ‘#’. To compute the match strength between two strings, they used the
simple linear function we previously described in equation 3.2 on page 40. The Forrest
schema detection experiment is duplicated here, substituting cooperative coevolution for
the genetic algorithm used in their study.

The experiment consists of evolving match sets for three separate target sets, each
consisting of 200 64-bit strings. The strings in the first target set will be generated in equal
proportion from the following two half-length schemata:

11111111111111111111111111111111################################

################################11111111111111111111111111111111.

In other words, 100 of the strings in the target set will begin with a sequence of 32 ones
and the other 100 strings will end with a sequence of 32 ones. The variable half of each of
the strings will consist of random patterns of ones and zeros. Similarly, the strings in the
second target set will be generated in equal proportion from the following quarter-length
schemata:

1111111111111111##

################1111111111111111 ################################

################################1111111111111111################

##1111111111111111,

and the strings in the third target set will be generated in equal proportion from the
following eighth-length schemata:

11111111##

########11111111##

################11111111##

########################11111111################################

################################11111111########################

##11111111################

##11111111########

##11111111.

Note that the niches in the target set generated from the eighth-length schemata should
be significantly harder to find than those generated from the half-length or quarter-length
schemata. This is because the fixed regions that define the niches of the eighth-length
schemata are smaller with respect to the variable region of the strings.

Since we know a priori how many niches exist and are only interested in whether we
can locate and cover them, we simply evolve an equal number of species as niches. We
defer to section 5.6 the issue of determining an appropriate number of species when this
information is not available beforehand. For example, since we know that the first target
set was generated from two schemata and therefore will contain two niches, we evolve two
species to cover these niches. Similarly, four species are evolved to cover the second target
set, and eight species are evolved to cover the third target set.

The average number of bits matched per target string using a match set consisting of
the best individual from each species is shown in figure 5.1 on the next page. Each curve in
the figure was computed from the average of five runs of 200 generations using the indicated
target set. Overlaid on the curves at increments of 40 generations are 95-percent confidence

75

30

35

40

45

50

0 50 100 150 200

A
ve

ra
ge

 B
its

 M
at

ch
ed

Generations

half-length
quarter-length
eighth-length

Figure 5.1: Finding half-length, quarter-length, and eighth-length schemata

intervals. The dashed horizontal lines in the graph represent the expected match values
produced from the best possible single-string generalist. Given the half-length, quarter-
length, and eight-length schemata shown, this generalist will consist entirely of ones, and
its average match scores for the three target sets will be 48, 40, and 36 respectively. The
Forrest study demonstrated that a standard genetic algorithm consistently evolves this best
possible single-string generalist. Figure 5.1 shows that when multiple species collaborate,
they are able to cover the target set better than any single individual evolved with a standard
genetic algorithm. Furthermore, when more species are employed, as in the eighth-length
schema experiment, the amount of improvement over a standard genetic algorithm increases.

The reason for this improvement can be seen in figure 5.2 on the following page. This
figure shows the best individual from each of the species at the end of the final generation
of the first of five runs from the half-length, quarter-length, and eighth-length schemata
experiments. The substrings perfectly matching the fixed regions of the schemata have
been highlighted in each individual for ease of viewing. A couple of observations can be
made from this figure. First, it is clear that each species focuses on one or two target string
subsets and relies on the other species to cover the remaining target strings. This enables
the species to cover their respective subsets better than if they had to generalize over the
entire target set. Stated another way, each species locates one or two niches where it can
make a useful contribution to the collaborations that are formed. This is strong evidence
that the species have a cooperative relationship with one another. Second, occasionally two
or more species may occupy a common niche, for example, the fourth and fifth species from
the eighth-length schemata experiment. Although our model of cooperative coevolution
does not exclude this possibility, each species must make some unique contribution to be

76

1111111110001101111000001111111101011010110111101100001111101010Species 8:

1111001011111110100000101011010100100100100100010111000111111111Species 7:

0001011011111011011010001111111100110011111111101111111100110000Species 6:

1101100100100010110000111100101111111111100101011001000111111111Species 5:

0000111011111111101110010111101011111111010001101100010111111101Species 4:

1010111100000111111101111001000011100110011110111101111100000111Species 3:

1011111001010001111111110010101110010000101101111110111011010010Species 2:

1100100011111110001011110100000011001011111111110011010011110010Species 1:

Species 1: 1111111111111111111111111111111110100110001000111111100010110111

Species 2: 0010000001001110110100001000100011111111111111111111111111111111

Species 1: 1111111111111111000110011001010011111111111111110111111111110111

Species 4: 1001101110011000111111111111111110110100010100011010101101101111

Species 3: 0101010101101101111111011111110100001010001011101111111111111111

Species 2: 1111111111011111111111101011111111111111111111111000010100010000

Eighth-length

Half-length

Quarter-length

Figure 5.2: Final species representatives from schemata experiments

considered viable. Third, some of the species make no obvious contribution, for example,
the third species from the eighth-length schemata experiment. It may be that this species
has found a pattern that repeatedly occurs in the random region of some of the target
strings and its contribution is simply not readily visible to us. Another possibility is that
this particular species is genuinely making no useful contribution and should be eliminated.
One such mechanism for removing unproductive species will be explored in section 5.6.

5.4 Finding an Appropriate Level of Generality

The next issue we will explore is,

Will each species evolve to an appropriate level of generality?

This is an important question because, in solving covering problems, the covering set will
typically have fewer elements than the number of items that need to be covered. Therefore,
generalization to some degree is required.

77

To determine whether species will evolve to an appropriate level of generality, we per-
formed a number of experiments using the following 32-bit test patterns1:

11111111111111111111111111111111

11111111110000000000000000000000

00000000000000000000001111111111.

The best single-string cover of these three patterns is the following:

11111111110000000000001111111111,

which produces an average match score of (20 + 22 + 22)/3 = 21.33. The best two-string
cover of the three patterns is a string consisting of all ones and a string whose 12-bit middle
segment is all zeros. A cover composed of these two strings will produce an average match
score of 25.33. For example, the following two strings:

11111111111111111111111111111111

10010110110000000000001111110101

are scored as follows: (32+20+24)/3 = 25.33. Note that the makeup of the extreme left and
right 10-bit segments of the second string is unimportant. Of course, the best three-string
cover of the three patterns is simply the patterns themselves.

To build on the previous section in which it was shown that a collection of species can
discover important environmental niches, we hid the three 32-bit test patterns by embedding
them in three schemata of length 64. A target set composed of 30 strings was then generated
in equal proportion from the schemata. The schemata are as follows:

1##1###1###11111##1##1111#1##1###1#1111##111111##1#11#1#11######

1##1###1###11111##1##1000#0##0###0#0000##000000##0#00#0#00######

0##0###0###00000##0##0000#0##0###0#0000##001111##1#11#1#11######.

Four experiments consisting of five runs each were performed. In the first experiment,
we evolved a cover for the target set using a single species. This is of course equivalent to
using a standard genetic algorithm. The remaining three experiments include evolving two,
three, and four species respectively. The plots in figures 5.3, 5.4, 5.5, and 5.6 beginning
on the next page show the number of target bits matched by the best individual from
each species. They were generated from the first run of each experiment rather than the
average of the five runs so that the instability that occurs during the early generations is not
masked. However, we verified for each experiment that all five runs produced similar results.
Although the figures show just the number of bits matching the 32-bit target patterns, the
fitness of individuals was based on how well the entire 64 bits of each target string was
matched.

In figure 5.3 we see that after an initial period of instability, the single species stabilizes
at the appropriate level of generality. Specifically, 20 bits of the first pattern are matched,
and 22 bits of the second and third patterns are matched. This result is consistent with
the best single-string generalist described previously. Figure 5.4 shows that when we more
fully utilize the model of cooperative coevolution by evolving two species, the first pattern

1Using 66-bit complements of the three test patterns shown, Forrest et al. (1993) experimented with the
generalization capability of a single-population evolutionary algorithm utilizing emergent fitness sharing.

78

0

4

8

12

16

20

24

28

32

0 25 50 75 100 125 150

T
ar

ge
t B

its
 M

at
ch

ed

Generations

target 1
target 2
target 3

Figure 5.3: One species covering three hidden niches

0

4

8

12

16

20

24

28

32

0 25 50 75 100 125 150

T
ar

ge
t B

its
 M

at
ch

ed

Generations

target 1
target 2
target 3

Figure 5.4: Two species covering three hidden niches

79

0

4

8

12

16

20

24

28

32

0 25 50 75 100 125 150

T
ar

ge
t B

its
 M

at
ch

ed

Generations

target 1
target 2
target 3

Figure 5.5: Three species covering three hidden niches

0

4

8

12

16

20

24

28

32

0 25 50 75 100 125 150

T
ar

ge
t B

its
 M

at
ch

ed

Generations

target 1
target 2
target 3

Figure 5.6: Four species covering three hidden niches

80

is matched perfectly and the other two patterns are matched at the level of 26 and 18 bits
respectively—consistent with the best possible two-string generalization. When we increase
the number of species evolved to three, all three patterns are matched perfectly at the
level of 32 bits, as shown in figure 5.5. This indicates that each species has specialized
on a different test pattern. Finally, in figure 5.6 we see that when the number of species
is increased to four, perfect matches are also achieved. However, in terms of the number
of fitness evaluations, this experiment required more resources to achieve perfect matches.
Note that each generation plotted in all these figures represents 50 fitness evaluations.

Conclusive evidence that the species evolve to appropriate levels of generality can be
seen in figure 5.7 on the facing page, which shows the best individual from each of the
species at the end of the final generation. It also shows that after removing all the bits
corresponding to the variable regions of the target strings, the patterns that remain are the
best possible one, two, and three element covers described earlier.

One final observation from figure 5.7 is that by removing the bits corresponding to
variable target regions in the four-species experiment, it becomes obvious that the third
and fourth species have focused on the same 32-bit target pattern. However, the bits from
these two individuals corresponding to the variable regions of the target strings are quite
different. What is occurring is that the two species are adapting to different repeating
patterns in the variable regions of the target strings. This enabled the ecosystem with
four species to achieve a slightly higher match score on the full 64-bit target strings than
the ecosystem with three species. To determine whether this difference is significant, an
additional 95 runs were performed using the three- and four-species ecosystems to bring the
total to 100 runs apiece. The arithmetic means from the two sets of runs were 51.037 and
51.258 respectively. A p-value of 0.0000 produced by a two-sided t-test verifies that this
difference is unlikely to have occurred by chance.

5.5 Adapting to a Dynamic Environment

Now that we know that the model is able to discover multiple environmental niches and
evolve subcomponents appropriate in generality to cover them, the next question we need
to answer is,

Will species adapt to changes in the environment?

This question is important for a number of reasons. First, some of the tasks to which we may
want to apply evolutionary algorithms will have non-stationary objective functions (Pettit
and Swigger 1983; Goldberg and Smith 1987; Cobb 1990; Grefenstette 1992). Second, in a
coevolutionary model, an adaptation by one species can change the objective functions of all
the species it interacts with. Third, adding new species to the ecosystem is a major source
of environmental change that will occur in any model of coevolution among interdependent
species if we do not know a priori how many species are required, which will generally be
the case, and must dynamically create them as evolution progresses. One of the results of
incrementally creating species in our cooperative model is that as the new species begin
making contributions, the older species are free to become more specialized.

We can observe many examples of non-stationary objective functions in nature. In
natural ecosystems, fitness landscapes may change due to random processes such as climatic

81

1001010100011111001001000101101010100001100111101111101011100110Species 1:

11111111110000000000001111111111

Noise removed

1001000100011111001001111111111111111111111111111111101111111100Species 1:

0100010000000000000010000001001110100000100111101101101011000010Species 2:

1001100100011111011001000101101000100000100000001010010100110010Species 3:

11111111111111111111111111111111
00000000000000000000001111111111
11111111110000000000000000000000

Noise removed

Three-species experiment

11111111111111111111111111111111
00000110000000000000001001110011

Noise removed

0100110000000110000010000101101010100000000100101111010011000110Species 2:

1011000100011111001001111111111011011111111111101111101111110110Species 1:

One-species experiment

Two-species experiment

1001000100011111001001111111111111111111111111111111101111111100Species 1:

0100010000000000000010000001001110100000100111101101101011000010Species 2:

1101011101111111101001000101101000100001100000001000000100101100Species 3:

11111111111111111111111111111111
00000000000000000000001111111111
11111111110000000000000000000000
11111111110000000000000000000000

Noise removed

Four-species experiment

1011000101011111011101000101000000000001000000000010000100011000Species 4:

Figure 5.7: Final representatives from one through four species experiments before and
after the removal bits corresponding to variable target regions

82

changes. When this occurs species must adapt or be destroyed. For example, when a major
drought occurred on Daphne Major Island in the Galápagos in 1977, the population of
finches was dramatically reduced while the size of the surviving birds increased. The increase
in the proportion of larger birds was presumably an adaptation to a change in their food
source—mostly larger and harder to crack seeds were available during the drought (Boag
and Grant 1981). Of course, the activity of a species may also have a major impact on its
ecosystem, which in turn may warp the objective function of other species and force their
adaptation. A classic example is melanism in the moth, Biston betularia, which occurred
in industrial areas of Britain beginning around the year 1850 (Kettlewell 1955). Prior to
1850, all the moths were whitish gray with black speckles. This made the moths difficult
to see when resting on the lichen covered tree bark of the region. However, as air pollution
from industry began to kill the lichen, a black form of the moth called carbonaria appeared.
The carbonaria blended in much better to darker tree surfaces. By the middle of the 20th
century, almost all the moths in the region were of the form carbonaria. In this case, the
activity of the species Homo sapiens warped the fitness landscape of Biston betularia by
killing the lichen that it depended on for concealment. B. betularia was forced in turn to
adapt by evolving a new camouflage.

As a thought experiment to illustrate the point that when new species are added to a
cooperative ecosystem the existing species are free to become more specialized, let us say
that species A is doing a mediocre job of performing task T . Perhaps it is a generalist
and is trying to cover several tasks in addition to T at the expense of performing any of
them really well, or perhaps it simply has not had time to evolve a good solution for T . If
a new species, B, is created, and one of the individuals of B can perform T better than
any individual of species A, the species A individuals who perform T will no longer have
a selective advantage over other individuals of A based on their ability to perform that
particular skill. As a result, species A will now be free to focus on other skills. Of course, if
B can only perform T slightly better than A, we may see the roles quickly reverse. That is,
A may produce an individual who through genetic variation is able to assume once again
the role of covering T .

This is similar to the notion of character displacement that occurs in competitive envi-
ronments (Brown and Wilson 1956). For example, another study of finches in the Galápagos
by Lack (1947) determined that on the eight islands occupied by both Geospiza fortis and
Geospiza fuliginosa, the average depth of the G. fortis beak was approximately 12 mm while
the average depth of the G. fuliginosa beak was approximately 8 mm. However on the is-
lands Daphne, occupied only by G. fortis, and Crossman, occupied only by G. fuliginosa,
the average beak depth of both species was approximately 10 mm. The interpretation of
this observation is that when both competing finch species occupy the same ecosystem, their
beaks evolve to become specialized to either a larger or smaller variety of seeds. However
when only one of these two species occupies an ecosystem, it evolves a more general purpose
beak suitable for consuming a wider variety of seeds.

To determine whether the species in our model of cooperative coevolution are able to
adapt to a dynamic environment, we generate a target set from the same three schemata
used in the previous section to demonstrate the ability of multiple species to evolve to an
appropriate level of generality. We begin this experiment with a single species and add new
species on a fixed schedule. Specifically, we add a second species at generation 100 and a

83

0

4

8

12

16

20

24

28

32

0 50 100 150 200 250 300

T
ar

ge
t B

its
 M

at
ch

ed

Generations

target 1
target 2
target 3

Figure 5.8: Shifting from generalists to specialists as new species are added to the ecosystem
on a fixed schedule

third species at generation 200.

The number of target bits from the fixed region of the schemata matched by the best
individual from each species is shown in figure 5.8. As in the experiments run in the previous
section, the fitness of individuals was based entirely on how well the full 30-element target
set of 64-bit strings was covered. Each dashed vertical line marks the creation of a new
species. It is clear from the figure that the roles of existing species change as new species
are introduced. Furthermore, it is apparent that when the second species is introduced,
one of the species specializes on the strings containing the first target pattern, while the
other species generalizes to the strings containing the other two target patterns. Similarly,
when the third species is introduced all three species are able to become specialists. When
we compare figure 5.8 with figures 5.3, 5.4, and 5.5 from the previous section, we see that
the region of figure 5.8 in which a single species exists is similar to figure 5.3; the region
in which two species exists is similar to figure 5.4; and the region in which three species
exists is similar to figure 5.5. A final observation is that a period of instability occurs just
after each species is introduced. This is evidence of a few quick role changes as the species
“decide” which niche they will occupy. However, the roles of the species stabilize after they
evolve for a few generations.

5.6 Evolving an Appropriate Number of Species

The fourth and final question we seek to answer in this study of the basic decomposition
capability of the model is,

84

Will the occasional creation of new species and the elimination of unproductive
ones induce the emergence of an appropriate number of species?

It is important not to evolve too many species because each species requires computational
resources. This is due to the increasing number of fitness evaluations that need to be
performed, to the need for applying operators such as crossover and mutation to more indi-
viduals, and to miscellaneous computational overhead such as converting between genotypic
and phenotypic representations. On the other hand, if we evolve too few species they will
be forced to be very general—resulting in mediocre covers as we saw in the previous few
sections.

One possible method for evolving an appropriate number of species was illustrated in
figure 3.4 on page 34. The basic idea is that we check for evolutionary stagnation by
monitoring the change in fitness of the collaborations over time. If we are not improving
significantly, the unproductive species are eliminated, and a new species is created.

To determine whether this method is sufficient, we use the same target set as in the
previous two sections and begin by evolving a single species. Every ecosystem generation
we check for evolutionary stagnation, and if we are not making sufficient improvement,
the algorithm for deleting and creating species is applied. In this experiment we define a
significant improvement to be an increase in fitness of at least 0.5 over five generations,
where the fitness is computed as the match score averaged over the complete set of 64-bit
target strings. A unproductive species is defined in this experiment as one who is making
a contribution of less than 5.0, where its contribution is defined to be the portion of the
collaboration fitness it produces. Therefore, the sum of the contributions from each species
is equal to the total fitness of the collaboration. Recall from equation 3.3 on page 40 that
a species only contributes to the fitness of a collaboration when it matches a target string
better2 than any other member of the collaboration. We refer to the amount of contribution
that a species must make to be considered viable as its extinction threshold.

The contributions of each species in the ecosystem over 300 generations are plotted
in figure 5.9 on the facing page. The vertical dashed lines represent stagnation events in
which unproductive species are eliminated and a new species is created. At generation 139,
evolution has stagnated with three species in the ecosystem. The species are contributing
17.13, 16.80, and 15.80 respectively. Of course we know from the experiments in the previous
few sections that this is the optimal number of species for this particular problem; however,
the macroevolutionary model does not possess this prior knowledge and creates a new
species. This species is only able to contribute 1.57 to the fitness of the collaboration,
which is less than the extinction threshold, and therefore it is eliminated at generation 176.
At this point another species is created, but it does not begin making a contribution until
generation 192. Since the most this new species contributes is 1.53, it is eliminated at
generation 197, and another new species is created. From this point until the end of the
run, none of the new species ever makes a non-zero contribution; therefore, they are each
eliminated in turn when stagnation is detected.

The first observation that can be made from this experiment is that when using our
simple method for creating new species and eliminating unproductive ones, an appropriate
number of species in the ecosystem emerges. Specifically, the ecosystem stabilizes to a state

2Ties are won by the older species.

85

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

S
pe

ci
es

 C
on

tr
ib

ut
io

n

Generations

Figure 5.9: Changing contributions as species are dynamically created and eliminated from
the ecosystem

in which there are three species making significant contributions and a fourth exploratory
species providing insurance against the contingency of a significant change in the environ-
ment. Although our simple string covering application has a stationary objective function
so this insurance is not really necessary, this would often not be the case in “real-world prob-
lems”. The second observation is that although the fourth and fifth species were eventually
eliminated, they were able to make small contributions. These contributions were the result
of repeating patterns in the random regions of the target strings. If we had been interested
in these less significant patterns we could have set the extinction threshold to a smaller
value—perhaps just slightly above zero—and these species would have been preserved.

5.7 Summary

In summary, this chapter has demonstrated, within the context of a simple string cov-
ering problem, that the model of cooperative coevolution is able to discover important
environmental niches, evolve subcomponents appropriate in number and generality to cover
those niches, and that the specific roles played by these subcomponents will change as they
coadapt to a dynamic fitness landscape. It accomplishes this through a task-independent
approach in which the problem decomposition emerges purely as a result of evolutionary
pressure to cooperate.

Although the goal of this chapter has been met by providing an initial step in determining
whether evolutionary pressure alone is sufficient for producing good decompositions, an
application of the model to more complex domains is necessary to determine the robustness

86

of the approach. This and other issues will be explored through a number of case studies
in the next chapter.

Chapter 6

CASE STUDIES IN EMERGENT PROBLEM

DECOMPOSITION

Now that we have achieved an understanding of the basic decomposition capability of the
model, this chapter continues with two relatively complex case studies in which cooperative
coevolution is applied to the construction of artificial neural networks and to concept learn-
ing. By moving beyond the simple string matching problem of the previous chapter into
these more complex domains, we explore the robustness of the model’s ability to decompose
problems. We are especially interested in determining whether any aspects of the model
need to be modified to handle problems that can only be decomposed into subtasks with
complex and difficult to understand interdependencies. In the case studies, we also directly
compare and contrast the decompositions produced by cooperative coevolution and those
produced by some well-known non-evolutionary approaches that are highly task-specific.
This comparison provides further insight into the emergence of problem decompositions
resulting from the interplay and coadaptation among evolving species sharing a common
ecosystem.

Both of the case studies in this chapter follow the same basic format. They begin with
a brief description of the domain. This is followed by a section that provides background
information on previous approaches to solving problems from the domain with evolutionary
computation and a description of our specific approach that applies cooperative coevolution
to the task. Next, the non-evolutionary decomposition technique that will be used for
comparison is described. This is followed by a description of the specific problem that
will be solved. The final section of each case study presents experimental results and
observations.

6.1 Artificial Neural Network Case Study

In the first case study, our task will be to construct a multilayered feed-forward artificial
neural network that, when presented with an input pattern, will produce some desired
output signal. This type of network is typically trained using a gradient-descent technique
in which an error signal is propagated backwards through the network (Rumelhart, Hinton,
and Williams 1986). The error signal is generally computed as the sum-squared difference
between the actual network output and the desired output for each element of a set of
training patterns—assuming the desired outputs are known a priori. The network is trained
to produce the correct output through many iterations of passing training patterns forward
through the network, generating and back-propagating the error signal, and appropriately

87

88

O2O1

H2

H1

+1

I2

I1

Figure 6.1: Example cascade network

adjusting the connection weights. This form of learning, where the method has access
to preclassified training patterns, is called supervised learning. If the desired outputs are
not known beforehand, as in reinforcement learning, where only occasional performance-
related feedback is available, an error signal must be computed by some other means.
For example, Q-learning—one of the more popular reinforcement learning techniques—
estimates the desirability of the network output signal produced by a given input pattern
through the use of a predictive function that is learned over time (Watkins 1989; Watkins
and Dayan 1992).

6.1.1 Evolving Cascade Networks

A cascade network is a form of multilayered feed-forward artificial neural network in which
all input nodes have direct connections to all hidden nodes and to all output nodes. Fur-
thermore, the hidden nodes are ordered and their outputs are cascaded; that is, each hidden
node sends its output to all downstream hidden nodes and to all output nodes. An example
cascade network having two inputs, a bias signal, and two outputs is shown in figure 6.1.
Each box in the figure represents a connection weight. Cascade networks were originally
used in conjunction with the cascade-correlation learning architecture (Fahlman and Lebiere
1990). Cascade-correlation, described in detail in section 6.1.2, constructs and trains the
network one hidden node at a time using a gradient descent technique. Similar architectures
in which a genetic algorithm is used as a replacement for gradient descent have also been
explored (Potter 1992; Karunanithi, Das, and Whitley 1992).

Because cascade networks have a well-defined topology, only the weights on the con-
nections and the network size need to be evolved. A direct approach to the evolution of
neural network connection weights with a standard evolutionary algorithm is to let each
individual represent the connection weight assignments for the entire network. The con-
nection weights may be encoded simply as a vector of floating point numbers if using an
evolution strategy, or with a binary encoding in which each real-valued connection weight is

89

mapped to a segment of a string of ones and zeros if using a genetic algorithm. Individuals
are typically initialized randomly, and evolved until a network is created with an acceptable
level of fitness. The fitness of an individual is determined by computing the sum-squared
error as training patterns1 are fed forward through a network constructed to the individual’s
specification. Individuals producing networks with lower sum-squared errors are considered
more highly fit.

Cascade networks were designed to be constructed one hidden node at a time. A tra-
ditional single-population evolutionary algorithm could incrementally construct these net-
works by initially evolving a population of individuals representing just the direct input-
to-output connections. If evolutionary improvement stagnates before a network with suf-
ficiently high fitness has been found, additional random values representing the weighted
connections into and out of a new hidden node could be added to the end of each individual.
This cycle, of evolving until improvement stagnates and lengthening the individuals, would
continue until an acceptable network is found or until a predetermined number of network
evaluations have been performed.

For example, if the cascade network shown in figure 6.1 on the facing page was being
evolved, the initial population would consist of individuals representing the six connection
weights associated with the direct connections, denoted by black boxes, from the input nodes
to the output nodes. Note that the bias signal is simply treated as another input. This
population would be evolved until improvement approaches an asymptote. Five random
values would then be added to the end of each individual to represent the connection
weights associated with the first hidden node. These connections are denoted by gray boxes
in the figure. Evolution of the population would proceed until stagnation is again detected.
At this point, six additional random values would be added to the end of each individual
representing the connection weights associated with the second hidden node. These are
denoted by white boxes in the figure.

To evolve the cascade network with our computational model of cooperative coevolution,
we begin as with the standard evolutionary algorithm by evolving a single species that
consists of individuals representing the six connection weights associated with the direct
connections from the input nodes to the output nodes. This species would be evolved until
improvement stagnates. At this point, a new species would be created whose individuals
represent the weights on the three input connections of the first hidden unit. Random
values representing the two output connection weights of the hidden unit, denoted by the
horizontal pair of gray boxes in the figure, would be appended to the end of each individual
belonging to the first species. Now that two species exist, neither the first species nor the
second species represents complete networks. To evaluate one of these subnetworks, it will
first be combined with an individual from the other species to form a complete network.
We use the current best individual from the other species to construct this collaboration.
Evolution of these two species proceeds in parallel until improvement again approaches
an asymptote. At this point a third species is created whose individuals represent the four
input connection weights associated with the second hidden unit. As before, the individuals
in the first species will be lengthened by two in order to represent the output connection
weights of the second hidden unit. This cycle continues until a network is created that
produces a sufficiently low sum-squared error. Using this scheme, a cascade network with

1Supervised learning is assumed.

90

k hidden nodes would be constructed from k + 1 species.
The specific evolutionary algorithm used in this case study is a (µ, λ) evolution strategy2

as described in figure 2.3 on page 13. That is, we have implemented a coevolution strategy.
In our experiments, µ = 10 and λ = 100. Each individual consists of two real-valued vectors:
a vector of connection weights, and a vector of standard deviations used by the mutation
operator. We require the standard deviations to always be greater than 0.01, and they are
adapted and initialized as described by equations 2.2, 2.3, and 2.4. The constants C and
R are set to one and twenty respectively. Mutation is the only evolutionary operator used.
Connection weights are limited to the range (−10.0, 10.0) and are randomly initialized.

Along with using an evolution strategy instead of a genetic algorithm, there is one
additional difference between the cooperative coevolutionary system used in this case study
and the one used in studying the basic decomposition capability of the model. Here we use
a slightly different approach when creating and eliminating species. A species is created,
as before, when evolutionary improvement stagnates; however, once it is created, we allow
just it and the species representing the weights on the connections to the output units to
be evolved until progress again approaches an asymptote. At this point, we will either
eliminate the new species if it is not making a significant contribution and create another
one to replace it, or we will continue with the evolution of all of the species in the ecosystem.
This small modification focuses our computational resources on enabling new species to find
a niche in which they can contribute more quickly—a change we found necessary due to the
greater complexity of the neural network search space.

6.1.2 The Cascade-Correlation Approach to Decomposition

In the context of a cascade network, problem decomposition consists of determining how
many hidden nodes are required and what purpose each hidden node will serve. We will
be comparing and contrasting the decompositions produced by cooperative coevolution
to those produced by cascade-correlation—a statistical technique designed specifically for
cascade networks by Fahlman and Lebiere (1990).

Prior to the development of the cascade-correlation learning architecture, feed-forward
networks were constructed by using rules-of-thumb to choose a reasonable topology, that
is, the number of hidden units, layers, and connectivity. The roles of the hidden units were
then allowed to emerge through the application of the back-propagation algorithm. One
source of inefficiency Fahlman and Lebiere noticed in this process was what they called the
“moving target problem”. They made the following observation:

Instead of a situation in which each unit moves quickly and directly to assume
some useful role, we see a complex dance among all the units that takes a long
time to settle down.

The cascade-correlation learning architecture was designed to eliminate the “complex
dance” observed by Fahlman and Lebiere by constructing the network one hidden unit at a
time and freezing the roles of the hidden units once established. The algorithm begins with
a network composed of only input and output units as described in the previous section.
The connection weights of this smallest-possible network are trained with the quickprop

2We have also applied a genetic algorithm to this task (Potter and DeJong 1995), but achieved better
results with the evolution strategy.

91

algorithm—a second-order technique related to Newton’s method (Fahlman 1988)—using
the sum-squared error as preclassified training patterns are fed forward through the network.
When improvement approaches an asymptote, a single hidden unit is added by way of
a two-phase process. In the first phase, the hidden unit3 is partially “wired” into the
network. Specifically, the hidden unit receives input signals but does not contribute to the
network output. The weights on its input connections are trained with quickprop using the
magnitude of the correlation between the output from the hidden unit and the sum-squared
error as training patterns are fed forward through the network. In other words, the hidden
unit is trained to respond either positively or negatively to the largest portion of remaining
error signal. In practice, the hidden unit will only “fire” when the most problematic patterns
from the training set are presented to the network—forcing the hidden unit to focus on a
specific region of the input space. Once training approaches an asymptote, the input weights
are frozen and the hidden unit is fully connected. We then enter the second phase in which
the output connection weights are trained as before. This cycle of adding a new hidden
unit, training and freezing its input connection weights, and training the entire set of output
connection weights will continue until a sufficiently low sum-squared error is produced.

6.1.3 Two-Spirals Problem

We will construct cascade networks to solve the two-spirals problem. The two-spirals prob-
lem, originally proposed by Alexis Wieland (posted to the connectionists mailing list on the
internet), is a classification task that consists of deciding in which of two interlocking spiral-
shaped regions a given (x, y) coordinate lies. The interlocking spiral shapes were chosen
for this problem because they are clearly not linearly separable. Finding a neural network
solution to the two-spirals problem has proven to be very difficult when using a traditional
gradient-descent learning method such as back propagation; therefore, the problem has
been used in a number of previous studies to test new network learning methods (Lang and
Witbrock 1988; Fahlman and Lebiere 1990; Whitley and Karunanithi 1991; Suewatanakul
and Himmelblau 1992; Potter 1992; Karunanithi, Das, and Whitley 1992).

To learn to solve this task, we are given a training set consisting of 194 preclassified
coordinates as shown in figure 6.2 on the next page. Half of the coordinates are located in
a spiral-shaped region designated as the black spiral and the other half of the coordinates
are located in an interlocking spiral-shaped region designated as the white spiral. The 97
black spiral coordinates are generated using the following equations:

r =
6.5(104 − i)

104
(6.1)

θ = i
π

16
(6.2)

x = r sin θ (6.3)

y = r cos θ (6.4)

where i = 0, 1, . . . , 96. The white spiral coordinates are generated simply by negating the
black spiral coordinates.

3More accurately, a small population of candidate units are created and trained in parallel throughout
the first phase; however, for the sake of clarity we ignore that detail in this description.

92

Figure 6.2: Training set for the two-spirals problem

When performing a correct classification, the neural network takes two inputs corre-
sponding to an (x, y) coordinate, and produces a +0.5 if the point falls within the black
spiral region and a −0.5 if the point falls within the white spiral region.

6.1.4 Experimental Results

Ten runs were performed using the cascade-correlation algorithm and an additional ten
runs were performed using cooperative coevolution. The algorithms were terminated when
all 194 training patterns were classified correctly as belonging to the black spiral or white
spiral. We first look at the number of hidden units produced by each method and then use
a couple of different visualization techniques to gain an understanding of what roles the
hidden units are performing.

Over ten runs, the cascade-correlation algorithm generated networks capable of correctly
classifying all the two-spirals training patterns. As shown in table 6.1 on the facing page, the
networks required an average of 16.8 hidden units. The table includes 95-percent confidence
intervals on the mean computed from the t-statistic. These results are consistent with those
reported by Fahlman and Lebiere (1990). In contrast, cooperative coevolution was only able
to generate a network capable of correctly classifying all the training patterns in seven out
of ten runs. However, in the seven successful runs, the networks produced by cooperative
coevolution required an average of only 13.7 hidden units to perform the task. Although
this represents a statistically significant difference in the number of hidden units required
to solve the problem, the parameters of the cascade-correlation algorithm could probably
be tuned to favor networks with fewer hidden units at the expense of an increased number

93

Table 6.1: Required number of hidden units

Method Hidden units

Mean Max Min

Cascade-correlation 16.80 ± 1.16 19 14
Coevolution 13.71 ± 2.18 18 12

of training epochs. The p-value produced from a two-sided t-test of the means was 0.015.

We begin our characterization of the roles played by the hidden units produced by
the two methods by describing the reduction in misclassification and sum-squared error
attributable to each unit. Table 6.2 on page 98 was generated by starting with the final
networks produced by the first runs of the two methods and eliminating one hidden node at
a time while measuring the number of training-set misclassifications and the sum-squared
error. The first run was chosen for this comparison arbitrarily; however, it appears to pro-
vide a reasonably fair comparison. The data is presented in the reverse order from how it
was gathered—beginning with a network containing no hidden units and adding one unit
at a time. Overall, we find the sequences from the two methods to be quite similar. One
similarity is that neither the misclassification nor the sum-squared error sequences mono-
tonically decrease; that is, both methods have created hidden units that, when looked at in
isolation, make matters worse. These units presumably play more complex roles—perhaps
working in conjunction with other hidden units. Another similarity is that the misclassifi-
cation sequences of both methods are more erratic than the sum-squared error sequences;
however, this is no surprise because neither method used misclassification information for
training. The major difference between the methods is that the cooperative coevolution se-
quences tend to make bigger steps and contain fewer elements. As we previously mentioned,
this difference could probably be eliminated by tuning the parameters of the algorithms.

We continue with our characterization of the roles played by the hidden units produced
by the two methods by studying a series of field-response diagrams generated from the same
networks summarized in table 6.2. The field-response diagrams shown in figures 6.3 and
6.4 were produced from the cascade-correlation network, and those shown in figures 6.5 and
6.6 were produced from the network evolved with cooperative coevolution. The diagrams
were generated by feeding the elements of a 256 x 256 grid of coordinates forward through
the network and measuring the output signal produced both by individual hidden units and
the entire network. Positive signals are displayed as black pixels, and negative signals are
displayed as white pixels. For example, in figure 6.3 on the following page the bottom-left
pair of field response diagrams is generated from a cascade-correlation network in which all
but the first six hidden units have been eliminated. The left diagram of that particular pair
shows the output from the sixth hidden unit and the right diagram of the pair shows the
corresponding output from the network.

We make a number of observations from a comparison of these two sets of figures. First,
both the cascade-correlation decompositions and those produced by cooperative coevolution
clearly exploit the symmetry inherent in the two-spirals problem. Some of this symmetry

94

network output

network output2nd hidden-unit output

no hidden units network output1st hidden-unit output

network output3rd hidden-unit output

network output4th hidden-unit output network output5th hidden-unit output

network output6th hidden-unit output network output7th hidden-unit output

Figure 6.3: Effect of adding hidden units on field response of network generated with
cascade-correlation algorithm

95

network output8th hidden-unit output network output9th hidden-unit output

network output10th hidden-unit output network output11th hidden-unit output

network output12th hidden-unit output network output13th hidden-unit output

network output14th hidden-unit output network output15th hidden-unit output

Figure 6.4: Effect of adding hidden units on field response of network generated with
cascade-correlation algorithm (continued)

96

network output

network output2nd hidden-unit output

no hidden units network output1st hidden-unit output

network output3rd hidden-unit output

network output4th hidden-unit output network output5th hidden-unit output

network output6th hidden-unit output network output7th hidden-unit output

Figure 6.5: Effect of adding hidden units on field response of network generated with
cooperative coevolution

97

network output8th hidden-unit output network output9th hidden-unit output

network output10th hidden-unit output network output11th hidden-unit output

network output12th hidden-unit output

Figure 6.6: Effect of adding hidden units on field response of network generated with
cooperative coevolution (continued)

98

Table 6.2: Effect of adding hidden units on training set classification

Hidden units Misclassifications Sum-squared error

CasCorr CoopCoev CasCorr CoopCoev

0 96 99 84.96 68.26
1 94 97 83.41 64.96
2 76 84 64.61 61.34
3 74 70 64.68 67.24
4 64 80 62.21 68.36
5 64 72 61.45 54.57
6 58 70 50.65 62.53
7 54 67 37.98 54.76
8 58 44 46.24 35.38
9 52 61 35.04 46.84

10 36 27 30.27 20.78
11 34 27 25.38 17.18
12 26 0 21.52 6.63
13 22 14.49
14 16 8.87
15 0 1.67

is due to the white spiral coordinates being the negation of the black spiral coordinates.
A second similarity is that the early hidden units focus on recognition in the center region
of the field. This shows that both methods are exploiting the fact that the training set
elements are more concentrated in the center of the field, as one can see from figure 6.2 on
page 92. A third similarity is that as hidden units are added to the network, their response
patterns tend to become increasingly complex, although this is less true with cooperative
coevolution than with cascade-correlation. The increase in complexity may simply be a
result of the network topology—the later hidden units have more inputs than the early
hidden units as shown in figure 6.1 on page 88.

There are also a couple of noticeable differences between the two sets of figures. The
cascade-correlation field-response diagrams tend to consist of angular-shaped regions while
the shapes in the diagrams produced by the network evolved with cooperative coevolution
are more rounded. In addition, the cascade-correlation diagrams are visually more complex
than the ones from cooperative coevolution. We hypothesize that differences between the
decompositions, as highlighted by the field-response diagrams, are due to the task-specific
nature of the cascade-correlation decomposition technique. Recall that cascade-correlation
uses the correlation between the output of a hidden node and the network error signal to
train the weights on the connections leading into the node. This enables the hidden node
to respond precisely to the (possibly) few training patterns that are responsible for most
of the error signal while ignoring the other training patterns. This is manifested in the
field-response diagrams as complex angular regions. Since cooperative coevolution does not

99

use task-specific statistical information as a focusing tool, it tends to paint with broader
brush strokes.

The obvious disadvantage of cascade-correlation is that it assumes not only that the
task is to build a cascade network, but also that a set of preclassified training patterns is
available. Cooperative coevolution does not make these assumptions; therefore, it has a
much wider range of applicability. For example, it could be effectively applied to problems
in reinforcement learning—an area in which genetic algorithms have proven to be superior
to current non-evolutionary techniques for training neural networks (Moriarty and Miikku-
lainen 1996). Its disadvantages with respect to supervised learning, however, are that it is
much slower and sometimes is not able to drive the misclassification rate completely down
to zero.

In summary, this case study demonstrates the emergence of good decompositions when
using cooperative coevolution in the complex domain of artificial neural network construc-
tion. We again emphasize that the advantage of cooperative coevolution over other methods
in this domain is its generality. The case study has a side benefit of demonstrating that
cooperative coevolution is as applicable to evolution strategies as it is to genetic algorithms.
Although we have only used cooperative coevolution in conjunction with genetic algorithms
and evolution strategies in our experiments, we see no reason why this meta strategy would
not be applicable to other evolutionary algorithms such as evolutionary and genetic pro-
gramming.

The case study also uncovers a limitation of the model. In all three unsuccessful runs,
failure occurred for the same reason. After all but a few of the 194 training patterns were
correctly classified, the new species being created were unable to find a niche in which they
could contribute. Until a niche is found, no member of the population is distinguished
from any other; that is, each will have a fitness of zero. From the basic principles of Dar-
winian evolution, a population only adapts when variation among individuals produces a
selective advantage. Further investigation of the three unsuccessful runs revealed that the
sum-squared error generated by the few remaining misclassifications was being masked by
the residual sum-squared error generated by all the other training patterns; therefore, vari-
ation among individuals produced no selective advantage and hence no further evolutionary
progress occurred.

6.2 Concept Learning Case Study

In this case study, our task will be to construct a general description of a concept from a
set of preclassified positive and negative examples. As in the previous case study, this is
an example of a supervised learning task. Once we have learned a concept description, we
should be able to determine correctly whether previously unclassified examples are instances
of the concept. We say that the task is to construct a general description because it should
cover unclassified examples that are different from any of the preclassified examples used
for learning.

Concept learning is a task that has been extensively studied by researchers in the field
of machine learning. Much of this work has been in the area of inductive learning from
examples using symbolic representation languages such as predicate calculus (Michalski
1983) and decision trees (Quinlan 1986). Other approaches are also possible. For example,

100

in this case study we will be experimenting with a biologically inspired representation in
which concept descriptions are evolved using a model of the immune system.

6.2.1 Evolving an Immune System for Concept Learning

Most of the previous work in which evolutionary computation has been applied to concept
learning has taken the approach of evolving binary-string genotypic representations with a
genetic algorithm and mapping them into some form of symbolic phenotypic representation
for evaluation, such as propositional logic. For some examples of this approach, see (Janikow
1991; Janikow 1993; De Jong, Spears, and Gordon 1993; Giordana, Saitta, and Zini 1994).
Here we take a radically different approach in which we use a simple model of one of the
recognition processes occurring within the vertebrate immune system to distinguish between
concepts. The motivation behind this approach is that the immune system has a highly
developed ability to discriminate between self and non-self, that is, to distinguish between
the vast array of molecules that are an integral part of our bodies and foreign molecules. We
have already seen two examples (evolution and neural networks) of successfully applying
computational models of biological systems to the solution of technical problems. We believe
that the immune system, especially some of its adaptive components, represents a third
example of a biological process that can be modeled and applied to a variety of problems
in which the ability to discriminate is required.

We begin with a brief description of the immune system. This is followed by a more
specific description of how we model one of its subsystems using cooperative coevolution
and how we apply the model to the problem of concept learning. Previous work on building
computational models of the immune system has been described earlier in this dissertation.

An Overview of the Immune System

The purpose of the immune system is to protect our bodies from infection. The system works
by recognizing the molecular signature of microbes or viruses that attack our bodies, and
once identified, eliminating the foreign molecules in a variety of ways. The immune system
consists of two interrelated components: an innate defense component and an adaptive
component. Here we will focus on the adaptive component, which is responsible for acquired
immunity.

We call the molecules capable of stimulating an acquired immune response antigens.
When the system is working properly, only foreign antigens will produce an immune re-
sponse. There are a number of ways antigens are recognized, depending on whether the
foreign molecule is inside or outside one of our body’s own cells. It is the job of antibodies—
protein molecules displayed on the surface of a type of white blood cell produced in the
bone marrow called a B-lymphocyte—to recognize antigens that are located in our body
fluid outside the cell boundary. Recognition by a B-lymphocyte occurs when one of its
antibodies comes into contact with an antigen of complementary shape. Although all the
antibodies on an individual B-lymphocyte have the same shape, we have about 10 trillion
of these B-lymphocytes circulating throughout our body, and they collectively have the
potential of representing about 100 million distinct antibody molecules at any one time. If
the B-lymphocyte recognizes an antigen, it develops into a plasma cell and begins excreting
large quantities of the antibody. The antibody, now circulating freely in the serum, coats
foreign molecules of like type and flags them for destruction. The flagged molecules may be

101

consumed, for example, by scavenger cells such as macrophages. In addition, the activated
B-lymphocytes enter a phase of hypermutation. The effect is to create offspring—called
clone cells because they come from one parent—that produce antibody with an even greater
affinity to bind to the specific type of foreign molecule under attack.

The antibody molecules are composed of two pairs of protein chains: the so-called heavy
chains and light chains. The heavy chains are constructed from four families of genes called
variable (V), diversity (D), joining (J), and constant (C). While each of these gene families
has a number of members, only one gene from each family—along with additional random
DNA segments—is used in constructing the protein. The chosen gene from each family is
not determined until the antibody is being formed, thereby enabling a few hundred genes to
create thousands of different heavy chain types through combinatorics. Similarly, the light
chains are constructed from the V, J, and C families. Because it is the specific combination
of light and heavy chains that determines what form of antigen the antibody will recognize,
the potential coverage is around 100 million distinct foreign molecules.

Another type of white blood cell—called a T -lymphocyte because it is produced in
the thymus gland—is able to recognize foreign molecules, such as viruses, that take up
residence within the body of our own cells. This is a more complex recognition process in
which protein fragments (peptides) of the invader are carried to the surface of the cell in
which they are hiding by the molecule major histocompatibility complex (MHC). The T -
lymphocytes display receptors on their surface that are sensitive to a specific peptide-MHC
complex, and they are constructed and function similarly to the receptors on the surface of
the B-cells. Therefore, once the foreign peptides are transported outside the cell membrane
by MHC, the T -lymphocytes are able to recognize them and launch an attack. The specific
nature of the attack depends on whether the peptide-MHC complex is recognized by a helper
T -cell or a killer T -cell. The killer T -cells respond to so-called class I MHC by attaching
themselves to the infected cell and attacking it directly. The helper T -cells respond to so-
called class II MHC, which is only produced by macrophage cells, by sending out a chemical
messenger called cytokines that stimulates the macrophage to destroy the parasite hiding
within it. Helper T -cells also play a role in the stimulation of B-lymphocytes to begin
secreting antibodies.

One should realize that the immune system is quite complex and is the focus of much
current research. We have only provided a very brief overview of some of its processes here.
Although this description should be sufficient for an understanding of this case study, for
more details concerning the workings of the immune system, see, for example, (Roitt 1994).

A Cooperative Coevolutionary Model of the Immune System

As in previous evolutionary computation models of the vertebrate immune system (cf. For-
rest and Perelson 1990), our model is limited to the interaction between B-lymphocytes and
antigens. It evolves these entities with a coevolutionary genetic algorithm similar to the
implementation described in chapter 3, and uses binary strings to represent their genetic
codes4. Some of the other details of the implementation used in this case study include:
a population size of 100, random initialization, uniform crossover at a rate of 0.6, and a

4In this simple model, little distinction is made between antibodies and antigens and the cells on which
they are displayed. We will use the terms B-lymphocyte or B-cell when we are referring to the combination
of a receptor (antibody) and an activation threshold.

102

0.28

10010101001100010100101100

Antigen

01001000 10010101000111110000010110 11111100111100000000001100

pattern maskthresh

100101##0001##########01##

B-lymphocyte

AntibodyActivation Threshold

Figure 6.7: B-lymphocyte and antigen representations

bit-flipping mutation rate set to twice the reciprocal of the chromosome length.

In biological systems, antibodies and antigens are folded into complex three-dimensional
shapes. The closer the complementary match between their shapes, the stronger the binding
forces will be between them. To represent these molecules using a genetic algorithm, one
possibility is to make no distinction between their genotype and their phenotype, that
is, simply to represent both antigens and antibodies as binary strings. Given this type
of representation, the binding force between a particular antibody and antigen can be
computed simply as a function of the similarity between their sequences of ones and zeros.
However, we use a slightly more complex schema representation for antibody phenotypes to
enable some regions of the receptor protein chains to be ignored in determining their final
geometric shape. This gives us the ability to model a range of antibodies from specialists,
which can only bind to a specific antigen, to more general antibodies, which can bind to
whole families of antigens that share common characteristics. In addition to antibody genes,
each B-lymphocyte has a “threshold gene” that represents the binding strength required
to initiate an immune response. Our representation of both B-lymphocytes and antigens is
shown in figure 6.7. Note that we produce an antibody—represented as a trinary schema—
from a binary pattern and mask gene. A mask bit of one generates a schema value equal
to the corresponding pattern bit, while a mask bit of zero produces a “don’t care” schema
value. The length of the pattern and mask genes depends on the complexity of the antigens
the antibody must recognize. The real-valued activation threshold of the B-lymphocyte,
in the range [0, 1], is produced from an 8-bit threshold gene. There is no distinction made
between the genotype and phenotype of an antigen.

In our model of coevolution, each species represents a population of B-lymphocytes
in one of three emergent phases of development. During the first phase—which begins
immediately after the species is created and continues until some of its B-cells are activated
by antigens—no cell has a selective advantage over any other so they are all reproducing at
a uniformly slow rate. Once some of the B-cells are activated by antigens, these cells begin

103

rapidly reproducing—marking the beginning of the second phase. This is also a time when
large changes in fitness occur as the crossover operator splices pieces of various successful
B-cells together. Eventually, the population will converge to slight variations of the most
highly fit B-cell and enter a third phase. Mutation is the dominant genetic operator during
this third phase, and it will produce relatively slight changes in cell fitness.

The B-cell development phases of our model differ somewhat from those in nature.
Recall from the immune system overview that when an actual B-cell is activated, it enters
a state of hypermutation called clonal selection. However, in both nature and our model
the activation of a B-cell marks the beginning of a period of rapid change.

Evolution begins with a single species. New species are created and unproductive species
eliminated as illustrated in figure 3.4 on page 34 when evolutionary improvement stagnates,
as determined by equation 3.1 on page 34. Evolutionary stagnation generally occurs after
the most recently created species has entered its third phase. In the context of this model,
problem decomposition consists of determining how many B-cells are required to cover a
set of antigens, and which antigens will be recognized by which B-cells.

The fitness of a B-lymphocyte is computed by adding it to a “serum” consisting of the
current best B-cells from each of the other species in the ecosystem. Each member of a set
of antigens (both foreign and self) is then presented to the serum. A particular B-cell is
considered to have recognized an antigen if the binding strength between its antibody and
the antigen exceeds its activation threshold and the antigen binds to the antibody more
strongly than to any other antibody in the serum. The fitness of the B-cell is defined to
be the number of foreign antigens recognized by all the antibodies in the serum, minus
the number of false-positives, that is, self antigens flagged as foreign. Therefore, as in our
other instantiations of cooperative coevolution, each B-cell is rewarded based on how well it
collaborates with B-cells from each of the other species to cover the collection of antigens.

A linear matching function that returns the percentage of matching bits in the antibody
and antigen vectors is used to compute the binding strength. The locations at which the
antibody contains a “don’t care” are ignored. We also experimented with a variety of
matching functions that are biased toward longer sequences of matching bits; however,
these more complex matching functions produced no significant performance improvement.

This model is applied to concept learning from preclassified positive and negative ex-
amples by having the set of positive examples represent foreign antigens and the set of
negative examples represent self antigens. Once the fitness of the immune system increases
to a point where all of the foreign antigens and none of the self antigens are recognized, the
best antibodies from each species collectively represent a description of the concept5. This
model can easily be generalized to discriminate between more than two classes by evolving a
separate family of antibodies for each concept. Each family would then recognize examples
of one concept as foreign and all the other examples as self. In this way, k classes could
be covered by k − 1 families of antibodies. This could be simply implemented by adding a
“class gene” to the B-lymphocytes.

What we have described in this section is admittedly an extremely loose model of an ac-
tual vertebrate immune system. We emphasize that the focus of this chapter is on emergent
problem decomposition—not biology. It is our belief, however, that there is a potential for

5Given noisy examples, the immune system would be evolved until most of the foreign antigens and few

of the self antigens are recognized.

104

ConceptDescript = nil
WHILE ConceptDescript does not cover all positive examples BEGIN

Randomly select an uncovered positive example Pk

Compute a bounded star that covers Pk without covering
any negative examples

Select a single conjunctive description C from the bounded star
according to user-supplied preference criteria

ConceptDescript← ConceptDescript ∨ C
END

RETURN ConceptDescript

Figure 6.8: AQ algorithm

building more biologically faithful coevolutionary models of the immune system that may
lead, not only to better machine learning systems, but also to greater insight into the
workings of our bodies. This issue will be further addressed in the final chapter.

6.2.2 The AQ Approach to Decomposition

We will be comparing the decompositions produced by our cooperative coevolutionary im-
mune system model with those produced by AQ15, a symbolic inductive learning system
developed by Ryszard Michalski et al. (1986). This system is one of the latest in a series of
AQ systems that constructs conjunctive descriptions using an enhanced propositional cal-
culus representation language. A complete AQ concept description consists of a disjunction
of conjunctive descriptions. In the context of AQ, problem decomposition consists of deter-
mining how many conjunctive descriptions are required to cover a set of training examples
and how the example set will be partitioned by the descriptions; that is, which positive
examples will be covered by each of the conjunctions.

Problem decomposition is accomplished in AQ by repeatedly applying a task-specific
technique called the star methodology. A star is the set of the most general conjunctive
descriptions that cover one of the positive examples without covering any of the nega-
tive examples. Since in complex domains the size of the stars can become unmanageable,
they are bounded by applying user-supplied preference criteria to eliminate some of the
descriptions. These bounded stars are repeatedly constructed until all positive examples are
covered. A concept description in disjunctive normal form is progressively built, one dis-
junct at a time, by combining a single conjunctive description from each bounded star. The
conjunctive descriptions are chosen by applying user-supplied preference criteria—as was
done in bounding the stars. The complete decomposition algorithm is shown in figure 6.8.
The ‘←’ operator in the figure represents substitution. The preference criteria used in this
case study for selecting the conjunctive descriptions are to maximize the number of newly
covered positive examples and to minimize the number of conjuncts.

105

Table 6.3: Issues voted on by 1984 U.S. House of Representatives

Index Issue

1 handicapped infants
2 water project cost sharing
3 adoption of the budget resolution
4 physician fee freeze
5 el salvador aid
6 religious groups in schools
7 anti satellite test ban
8 aid to nicaraguan contras
9 mx missile

10 immigration
11 synfuels corporation cutback
12 education spending
13 superfund right to sue
14 crime
15 duty free exports
16 export administration act south africa

6.2.3 Congressional Voting Records Data Set

In this case study we will evolve a political party classification system for members of
the U.S. House of Representatives given their voting records; that is, we will learn to
discriminate between the concepts republican and democrat. As in the neural network case
study, this is a supervised learning task in which we are given a number of preclassified
training examples. The data set from which the training examples are drawn consists of
435 voting records (267 democrat and 168 republican). Each record gives the vote cast by
an individual on the 16 issues shown in table 6.3. Although the actual voting records are
somewhat more complex, each vote in the compiled data set has been simplified to either
a yea, nay, or abstain. For use by our cooperative coevolutionary immune system model,
the symbolic voting records were converted into 32-bit binary strings (antigens) using the
mapping shown in table 6.4 on the next page. Depending on one’s political orientation, the
foreign antigens to be targeted by the immune system could represent either examples of
republicans or democrats. The symbolic data set was originally used in a machine learning
study by Schlimmer (1987) and was compiled from actual voting records from the 98th
Congress (1984).

6.2.4 Experimental Results

We first look at the quality of solutions produced by the coevolutionary immune system
model and the AQ algorithm in terms of how well they are able to discriminate between
republicans and democrats. As in the previous case study, a number of different visualization

106

Table 6.4: Mapping between voting records and binary strings

Vote Binary pattern

abstain 00
yea 01
nay 10

techniques will then be used to compare and contrast the decompositions produced.

Alternative methods for supervised concept learning are generally compared using a
metric called predictive accuracy. The converse of the predictive accuracy metric is an
estimate of the true error rate, which is defined to be the rate of errors the classifier would
produce if it were tested on a true distribution of examples from the “real world”. This can
be accurately estimated with a set of several thousand unbiased examples; however, in the
case of the voting records data set we are limited to a set of only 435 examples. The tenfold
cross-validation method is the recommended procedure for computing predictive accuracy
when more than 100 examples are available (Weiss and Kulikowski 1991). One performs
tenfold cross validation by randomly dividing the complete set of positive and negative
examples into ten partitions of approximately equal size. Ten runs are then performed, each
using a different set of nine partitions as the training set and the remaining partition as
the testing set. During each run, the concept learner will use the training set to construct
a concept description. Once the run is complete, the concept description is applied to
the testing set and the correct-classification rate is computed. The predictive accuracy is
computed by averaging the correct-classification rate produced from the ten runs.

Predictive accuracy curves for two variations of the immune system model evolved to
recognize democrats and ignore republicans are shown in figure 6.9 on the facing page.
We emphasize that the predictive accuracy measure was not used in any way by the co-
evolutionary system to influence the development of the B-cells; that is, only the training
examples were used in evaluating fitness. We compute the predictive accuracy using the
testing examples at the end of each generation purely for use in a post-mortem analysis of
the effectiveness of the method. In the first variation, which is labeled unbiased, the B-
lymphocyte mask genes were initialized completely randomly; while in the second variation,
labeled biased, approximately 90 percent of the alleles of each mask gene were initialized to
zero. Since a mask allele of zero generates a “don’t care” in the antibody phenotype, the
biased masks produced populations of more general antibodies. The runs were terminated
after 100 generations—enough time for the development of B-cells capable of correctly clas-
sifying about 97 percent of the training examples. From the graph it is apparent that by
biasing the system to evolve more general receptors, fewer generations are required for the
populations of B-cells to achieve a high level of competence in distinguishing self from non-
self. Specifically, the biased version achieved a predictive accuracy greater than 0.94 in only
two generations, while the unbiased version required 53 generations to reach a level greater
than 0.94. However, when we compare the biased and unbiased versions at the end of the
runs, we see almost no difference in predictive accuracy.

107

0.8

0.85

0.9

0.95

1

0 20 40 60 80 100

P
re

di
ct

iv
e

A
cc

ur
ac

y

Generations

unbiased
biased

Figure 6.9: Effect of initial bias on predictive accuracy of immune system model

The predictive accuracy of AQ15 on the voting records data set was also computed.
The AQ system was terminated when all the instances of republican and democrat voting
records in the training set were classified correctly. Rather than simply learning a concept
description for one of the classes, as is done in the immune system model, AQ15 learns
a separate concept description for each class. For example, it will first use the algorithm
shown in figure 6.8 on page 104 to learn a concept description for republicans using the
republican instances in the training set as positive examples and the democrat instances as
negative examples. It then will learn a concept description for democrats using the opposite
orientation. Later, when classifying the examples in the testing set, a conflict resolution
procedure will be used if the republican and democrat concept descriptions both match
the same example. We can also use this technique in conjunction with the immune system
model by evolving two distinct classes of B-cells. One class will recognize democrats (non-
self) and ignore republicans (self), while the other family will ignore democrats (self) and
recognize republicans (non-self). Each time cooperative coevolution creates a new species
of B-cells, it will have the opposite political party orientation of the previously created
species.

The final predictive accuracy results from AQ15, the biased and unbiased single-class
immune system models, and the biased and unbiased two-class immune system models are
summarized in table 6.5 on the next page. The table includes 95-percent confidence intervals
on the predictive accuracy measure computed from the t-statistic. A one-way analysis of
variance (ANOVA) was also run on the predictive accuracy results from the five methods
and no statistically significant difference between the means was found. The p-value from
the ANOVA was 0.271.

108

Table 6.5: Final predictive accuracy comparison of learning methods

Learning method Predictive accuracy

One cell class

unbiased 0.940 ± 0.032
biased 0.938 ± 0.021

Two cell classes

unbiased 0.935 ± 0.027
biased 0.964 ± 0.018

AQ 0.956 ± 0.023

Table 6.6: Required number of cover elements

Method Elements

Mean Min Max

Coevolution 5.10 ± 0.79 7 4
AQ 8.30 ± 0.68 9 6

The biased single-class variation of the immune system model will be used to compare
and contrast the decompositions produced by coevolution with those produced by the AQ
system. We choose the biased (for generality) variation of the immune system model be-
cause AQ is also biased to produce the most general descriptions possible. The single-class
variation of the immune system model is chosen for two reasons. First, for simplicity, we will
only be analyzing concept descriptions of democrats; therefore, only the results from the
AQ iterations in which democrat instances are taken to be positive examples and republican
instances are taken to be negative examples are relevant. Given that we will be analyzing
a single-class AQ decomposition, a comparison with a single-class immune system decom-
position is the most meaningful. Second, the single-class variation of the immune system
model is more biologically faithful.

We first contrast the number of components in the decompositions produced by the
two methods, specifically, the number of B-cells versus the number of conjunctive descrip-
tions required to cover the voting record training examples. Over ten runs, the immune
system consistently produced smaller covers than AQ. As shown in table 6.6, the immune
system model produced final-generation covers consisting of an average of 5.10 B-cells. The
table includes 95-percent confidence intervals on the mean computed from the t-statistic.
In contrast, the AQ system generated covers consisting of an average of 8.30 conjunctive
descriptions. This represents a statistically significant difference between the methods. A
two-sided t-test of the means produced a p-value of 0.0000.

109

Table 6.7: Interpretation of antibody schema

Schema Interpretation

00 abstain or half credit for yea or nay
01 yea or half credit for abstain
10 nay or half credit for abstain
11 half credit for yea or nay
0# abstain or yea
1# nay
#0 abstain or nay
#1 yea
ignore

To characterize the roles played by the components of the decompositions, the solutions
produced by both methods were converted into similar rule-based representations. The
schema-based antibodies evolved by the immune system model were converted into rules
using the mapping shown in table 6.7. This interpretation is a result of applying all length-
two schema to the binary patterns representing votes shown in table 6.4 on page 106.
Partial matches are given half credit. In addition, each immune system rule contains a
matching threshold that must be exceeded if the rule is to fire. This value is decoded from
the B-lymphocyte threshold gene as shown in figure 6.7 on page 102. The conversion of
AQ conjunctive descriptions into rules is trivial. The only difference between the AQ and
immune system rule representations is that the AQ rules have no explicit thresholds. If an
example to be classified does not match any of the rules perfectly, AQ15 uses a combination
of the strength of the partial match and the prior probability of the classes to make a
decision. See (Michalski, Mozetic, Hong, and Lavrac 1986) for more details concerning
AQ15 rule interpretation.

The rules produced by the first run of the immune system model are shown in fig-
ure 6.10 on the following page, and the rules produced by the first run of AQ are shown in
figure 6.11 on page 111. To enable the roles played by these rules to be further visualized,
the number of training set examples covered and classified by each of the rules is shown in
figures 6.12 and 6.13 on page 112. By covered, we mean the number of examples that would
have been classified by the rule if it were the only rule in the set. Although in practice mul-
tiple rules typically match each example, both the immune system model and AQ choose a
single rule to perform the classification based on some measure of strength; therefore, most
of the “covered” bars are much taller than the “classified” bars. In other words, an example
can be covered by many rules but will only be classified by a single rule. The exception is
the first rule generated by AQ, which always classifies everything it covers.

In analyzing these rule sets, the first observed difference is that, as previously noted,
significantly fewer rules were produced by the immune system model than by AQ. Not only
are there fewer rules, but the total number of conjuncts in the rule set is smaller—the
immune system rule set contains a total of 25 conjuncts while the AQ rule set contains 29

110

Rule 1:
IF 7 percent OF

v4 = abstain or nay
THEN democrat

Rule 2:
IF 67 percent OF

v4 = abstain or nay
v6 = yea
v9 = yea
v10= half credit for yea or nay
v11= nay
v12= nay or half credit for abstain
v13= abstain or yea
v14= yea or half credit for abstain
v15= yea

THEN democrat

Rule 3:
IF 54 percent OF

v2 = abstain or yea
v4 = nay
v5 = nay
v6 = abstain or half credit for yea or nay
v9 = yea
v11= yea or half credit for abstain
v13= abstain or nay

THEN democrat

Rule 4:
IF 77 percent OF

v3 = abstain or yea
v7 = abstain or nay
v8 = abstain or nay
v11= abstain or yea
v12= nay
v14= abstain or yea

THEN democrat

Rule 5:
IF 98 percent OF

v13= abstain or yea
v14= nay

THEN democrat

Figure 6.10: Rule-based interpretation of B-cells from final immune system cover

111

Rule 1:
IF v4 = abstain or nay

v3 = yea
THEN democrat

Rule 2:
IF v4 = nay

v12 = yea or nay
v6 = yea

THEN democrat

Rule 3:
IF v15 = yea

v14 = yea or nay
v2 = abstain or yea

THEN democrat

Rule 4:
IF v3 = abstain or yea

v11 = abstain or yea
v9 = yea or nay
v7 = abstain or nay

THEN democrat

Rule 5:
IF v3 = yea

v16 = abstain
v13 = yea

THEN democrat

Rule 6:
IF v5 = nay

v15 = yea
v3 = nay

THEN democrat

Rule 7:
IF v13 = nay

v2 = yea
v3 = nay

THEN democrat

Rule 8:
IF v12 = nay

v11 = abstain or yea
v16 = abstain
v3 = abstain or nay

THEN democrat

Rule 9:
IF v11 = yea

v2 = nay
v1 = nay
v16 = nay

THEN democrat

Figure 6.11: Rule-based interpretation of AQ conjunctive descriptions

112

0

50

100

150

200

250

1 2 3 4 5

E
xa

m
pl

es

Rule

classified
covered

Figure 6.12: Immune system rule coverage and classification

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9

E
xa

m
pl

es

Rule

classified
covered

Figure 6.13: AQ rule coverage and classification

113

conjuncts. Second, the AQ rules are all at about the same level of generality, while the
immune system rules vary from very general to quite specific. This second observation is a
possible explanation for the smaller number of rules produced by the immune system model.
By being more flexible in constructing rules with a wide range of generality, the immune
system model is able to discover a more optimal-sized decomposition.

The rule sets also have a number of similar characteristics. First, the initial rules
produced by both the immune system and AQ are very similar; specifically, they both
consider an abstain or nay on issue number four to be strong evidence that the voting
record belongs to a democrat. Furthermore, this is the most general rule produced by both
methods. From figures 6.12 and 6.13 one can see that this initial rule classifies most of the
examples. In other words, both methods have discovered that the vote on issue number
four is the most important discriminator. However, the immune system solution places
more emphasis on this discovery than the AQ solution. The second similarity is that the
decompositions produced by both methods must rely on a few rules that match only one or
two examples to cover the training set adequately.

As in the previous case study, cooperative coevolution has demonstrated its ability to
produce good problem decompositions using a task-independent approach in which the
number of subcomponents and the role each will play emerges purely as a result of evo-
lutionary pressure. The decomposition produced by the coevolutionary immune system
model on the congressional voting records data set is actually better than that produced by
AQ15 with respect to the size of the rule set. In addition, AQ15 has the disadvantages of
requiring that a set of preclassified training examples is available and of being much more
task-specific. The only disadvantage we have found to using the coevolutionary immune
system model for concept learning is that it is more computationally expensive than the
task-specific symbolic approaches.

6.3 Summary

In summary, through a direct comparison with two task-specific techniques, these relatively
difficult case studies have verified the robustness of our task-independent approach in which
problem decompositions emerge purely as a result of evolutionary pressure to cooperate.
Given problems from the domains of concept learning and neural network construction that
are only decomposable into subtasks with complex and difficult to understand interdepen-
dencies, the model of cooperative coevolution was able to discover important environmental
niches and evolve subcomponents appropriate in number and generality to cover those
niches. We emphasize that cooperative coevolution is an extremely general approach to
problem decomposition that can be applied to both supervised and reinforcement learning
tasks, yet the method produced decompositions as good as or better than those produced
by two highly task-specific approaches.

In addition to achieving our primary goal with respect to emergent problem decomposi-
tion, the chapter makes two secondary contributions. First, it demonstrates the applicability
of the coevolutionary model to evolution strategies as well as to genetic algorithms. We
strongly believe the model could be effectively applied to other classes of evolutionary al-
gorithms as well. Further evidence in support of this hypothesis can be found in earlier
work on applying cooperative coevolution to the SAMUEL system (Potter, De Jong, and

114

Grefenstette 1995). Second, it demonstrates the effectiveness of a novel approach to concept
learning in which cooperative coevolution is applied to a computational model of one of the
recognition processes within the vertebrate immune system. Whether computer simulations
of the immune system will join neural networks and evolution as prevalent biologically in-
spired tools for the solution of technical problems remains to be seen; however, this study
represents an initial step towards that purpose.

Chapter 7

CONCLUSIONS

7.1 Summary

This dissertation has addressed a serious limitation of traditional evolutionary algorithms
that reduces their effectiveness when applied to increasingly complex problems, namely
they lack the explicit notion of modularity required to provide reasonable opportunities
for solutions to evolve in the form of interacting coadapted subcomponents. Our goal has
been to find computational extensions to the current evolutionary paradigms in which such
subcomponents “emerge” rather than being designed by hand. The primary issues have
been how to identify and represent such subcomponents, provide an environment in which
they can interact and coadapt, and apportion credit to them for their contributions to the
problem solving activity such that their evolution proceeds without human involvement.

To accomplish this mission, we designed and analyzed a novel computational model
of cooperative coevolution in which the subcomponents of a problem solution are drawn
from a collection of species that interact within a common ecosystem yet are genetically
isolated. As described in chapter 3, each individual in the ecosystem is rewarded based
on how well it collaborates with individuals from other species to achieve a common goal.
The dynamics of the model are such that reasonable problem decompositions emerge due
to evolutionary pressure rather than being specified by the user. The model is a general
problem-solving method that is applicable to a variety of domains, and is not limited to
any particular underlying evolutionary algorithm. The evolution of genetically isolated
species in separate populations can be easily distributed across a network of processors
with little communication overhead, and unproductive cross-species mating is eliminated
through genetic isolation. In addition, by evaluating individuals from one species within
the context of individuals from other species, the search space is constrained.

In chapter 4 we performed a sensitivity analysis on some of the primary characteris-
tics of decomposable problems likely to affect the performance of the coevolutionary model.
Specifically, we analyzed the importance of the amount and structure of interdependency be-
tween problem subcomponents, the dimensionality of the decomposition, and the accuracy
of the collaboration fitness evaluations. Regarding the amount and structure of interdepen-
dency, the study demonstrated that the performance of the coevolutionary model gracefully
declines with an increase in the random epistatic interactions between species. This has
positive implications for the application of cooperative coevolution to the solution of a broad
class of problems with complex interdependencies between subcomponents. However, when

115

116

there are many highly structured interactions, as we found in some pathological problems
from the domain of real-valued function optimization, the model is quite susceptible to
becoming frozen in Nash equilibrium. We hypothesized that further research into alter-
native strategies for forming collaborations is likely to lead to models of coevolution less
susceptible to this difficulty. Results from an analysis of the effect of dimensionality on the
coevolutionary model were even more encouraging. The scalability of the model suggests
that coevolution may be suitable for the solution of extremely large problems; especially
when one considers the potential for parallelizing the model. Regarding the effect of inaccu-
racy of collaboration fitness evaluations, although the model was less resistant to noise than
the standard evolutionary model, we are confident that further research into alternative
collaboration strategies will lead to more robust coevolutionary models.

In chapter 5 we explored the basic problem decomposition capability of the model of
cooperative coevolution. We demonstrated, within the context of a simple string covering
problem, that the model is capable of provoking the emergence of species that work together
to cover multiple environmental niches, evolve to an appropriate level of generality, and
adapt to a changing environment. It accomplishes this through a task-independent approach
in which the problem decomposition emerges purely as a result of evolutionary pressure to
cooperate. We also investigated a technique for dynamically creating new species and
eliminating unproductive ones. The technique resulted in the emergence of an appropriate
number of coadapted species.

Finally, in chapter 6 we applied the model of cooperative coevolution to problems from
the domains of concept learning and artificial neural network construction that are only
decomposable into subtasks with complex and difficult to understand interdependencies.
The resulting problem decompositions were compared and contrasted with those produced
by task-specific non-evolutionary methods. These case studies verified the robustness of
our task-independent approach in which problem decompositions emerge purely as a result
of evolutionary pressure to cooperate. The model of cooperative coevolution was able to
discover important environmental niches and evolve subcomponents appropriate in number
and generality to cover those niches. Along with achieving the primary goal of validating
our approach to emergent problem decomposition, both case studies made secondary con-
tributions. The neural network study demonstrated the applicability of the coevolutionary
model to evolution strategies as well as to genetic algorithms. We strongly believe the model
could be effectively applied to other classes of evolutionary algorithms as well. The concept
learning study demonstrated the effectiveness of a novel approach to machine learning in
which cooperative coevolution is applied to a computational model of one of the recognition
processes within the vertebrate immune system. Whether computer simulations of the im-
mune system will join neural networks and evolution as prevalent biologically inspired tools
for the solution of technical problems remains to be seen; however, this study represents an
initial step towards that purpose.

7.2 Future Research

Throughout this dissertation we have suggested a number of possible directions for future
research into the design and analysis of computational models of cooperative coevolution.
To conclude, we now briefly expand on a number of these ideas.

117

Alternative Collaboration Strategies

The experiments described in this dissertation used a greedy collaboration strategy in which
all the individuals from one species are evaluated within the context of the best individual
from each of the other species. We chose this strategy because it is simple and requires
a minimal number of collaborations between individuals to be evaluated. However, we
showed in chapter 4 that this strategy has some undesirable characteristics. An important
area for future research is the study of alternative collaboration strategies. The patterns of
interaction, collaborative and otherwise, between interdependent species in nature can be
quite complex. One possible research direction would be to turn to the field of ecology for
inspiration in designing more biologically faithful collaboration strategies.

Alternative Ecological Relationships

This dissertation focused entirely on the ecological relationship known as mutualism in
which each species helps the other. Species in natural ecosystems also have competitive
and exploitative relationships. An interesting future research direction would be to apply
our basic model of genetically isolated species to the study of these alternative relation-
ships. Some work on coevolving species with competitive relationships has already been
done by other researchers; for example, see (Hillis 1991; Rosin and Belew 1995). More
advanced studies should model the coevolution of species having a variety of different types
of ecological relationships.

Alternative Models of Speciation

When we introduce a new species into an ecosystem, we always initialize its population
randomly. However, in nature new species generally arise from existing species. Much
more research needs to be done in the design and analysis of more biologically faithful
computational models of speciation.

Parallel Implementations

All the experimental studies described in this dissertation have used a sequential single-
processor implementation of cooperative coevolution in which each species is evolved in turn
for a single generation. However, not only can our model of cooperative coevolution take
advantage of all the previous methods for parallelizing evolutionary algorithms, but each
species can also be evolved by its own semiautonomous evolutionary algorithm running on its
own computer. One advantage of our model with respect to this form of parallelism is that
each species can be evolved asynchronously. Another advantage is that little communication
between species is required. Some preliminary studies suggest that there are cases in which
it may be advantageous to limit communication between species even more than in our
current model. There is clearly a need for more research into parallel implementations
of cooperative coevolution. We envision ecosystems of hundreds, or even thousands of
coadapting species interacting over vast computer networks.

118

Heterogeneous Representations

One major advantage of our coevolutionary model over previous computational models of
evolution is the ease in which one can evolve individuals with heterogeneous representa-
tions. As in nature, each species in our model is genetically isolated; therefore, there is no
requirement for their chromosomes to be compatible. It is even possible to mix evolutionary
algorithms in the same system, as in evolving some species having genotypic representa-
tions with genetic algorithms, and others having phenotypic representations with evolution
strategies or the evolutionary programming paradigm. The only requirement is the abil-
ity for the species to interact with one another. Perhaps some form of common interface
between species could be designed to facilitate this process. We feel that the evolution of
species with heterogeneous representations is an exciting enabling technology for problem
solving in highly complex domains.

Coevolving Complex Behaviors

A possible application area for our coevolutionary model is in learning behaviors for au-
tonomous robots or intelligent agents. In applying our model to behavior learning, each
species could represent a different area of expertise. We have already published the re-
sults of some preliminary research in which cooperative coevolution was used to develop a
rule-based system of behaviors for an autonomous robot (Potter, De Jong, and Grefenstette
1995). This work was an extension of a system called SAMUEL, which was designed to
evolve sets of sequential decision rules to be used by decision-making agents (Grefenstette,
Ramsey, and Schultz 1990). Although encouraging, for a variety of reasons this work was
somewhat inconclusive. However, after more research has been completed in the areas men-
tioned above it is likely that much more progress could be made in the area of coevolving
complex behaviors.

Coevolutionary Models of Molecular Biology

In chapter 6, we used coevolution in conjunction with a loose model of one of the recognition
processes within the vertebrate immune system as a concept learning system. One possible
research direction would be more investigation into the use of coevolutionary models of the
immune system for the solution of technical problems. There is, however, an alternative
research direction. Although our focus here has been on emergent problem decomposition,
not molecular biology, we believe that great potential lies in collaborating with immunol-
ogists to build more biologically faithful coevolutionary models of the immune system to
gain insight into the process by which our bodies overcome infection. This may be helpful,
for example, in our fight against the human immunodeficiency virus (HIV) or in making
headway against the disease of cancer.

BIBLIOGRAPHY

119

BIBLIOGRAPHY

98th Congress (1984). Congressional Quarterly Almanac, Volume XL. Washington, D.C.:
Congressional Quarterly Inc.

Ackley, D. H. (1987). A Connectionist Machine for Genetic Hillclimbing. Kluwer Aca-
demic.

Amdahl, G. M. (1967). Validity of the single-processor approach to achieving large scale
computing capabilities. In AFIPS Conference Proceedings, Volume 30, pp. 483–485.
AFIPS Press.

Axelrod, R. M. (1984). The Evolution of Cooperation. New York: Basic Books.

Bäck, T. and H.-P. Schwefel (1993). An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation 1 (1), 1–23.

Beasley, D., D. R. Bull, and R. R. Martin (1993). A sequential niche technique for mul-
timodal function optimization. Evolutionary Computation 1 (2), 101–125.

Belew, R. K. (1989). Back propagation for the classifier system. In J. D. Schaffer (Ed.),
Proceedings of the Third International Conference on Genetic Algorithms, pp. 275–
281. Morgan Kaufmann.

Bellman, R. (1957). Dynamic Programming. Princeton, New Jersey: Princeton University
Press.

Bhattacharyya, G. K. and R. A. Johnson (1977). Statistical Concepts and Methods. John
Wiley & Sons.

Boag, P. T. and P. R. Grant (1981). Intense natural selection in a population of Darwin’s
finches (Geospizinae) in the Galápagos. Science 214, 82–85.

Brown, Jr., W. L. and E. O. Wilson (1956). Character displacement. Systematic Zool-
ogy 5 (2), 49–64.

Carroll, L. (1871). Through the Looking-Glass and What Alice Found There. London:
Macmillan and Co.

Cobb, H. G. (1990). An investigation into the use of hypermutation as an adaptive oper-
ator in genetic algorithms having continuous time-dependent nonstationary environ-
ments. Technical Report NRL Memorandum 6760, Naval Research Laboratory.

Cohoon, J. P., S. U. Hegde, W. N. Martin, and D. Richards (1987). Punctuated equilibria:
A parallel genetic algorithm. In J. J. Grefenstette (Ed.), Proceedings of the Second
International Conference on Genetic Algorithms, pp. 148–154. Lawrence Erlbaum
Associates.

120

121

Compiani, M., D. Montanari, R. Serra, and G. Valastro (1988). Classifier systems and
neural networks. In E. R. Caianiello (Ed.), Parallel Architectures and Neural Net-
works: First Italian Workshop, pp. 105–118. World Scientific.

Cramer, N. L. (1985). A representation for the adaptive generation of simple sequential
programs. In J. J. Grefenstette (Ed.), Proceedings of an International Conference on
Genetic Algorithms and Their Applications, pp. 183–187. Lawrence Erlbaum Asso-
ciates.

Darwen, P. (1996). Co-Evolutionary Learning by Automatic Modularisation with Specia-
tion. Ph. D. thesis, University of New South Wales, Canberra, Australia.

Darwen, P. and X. Yao (1996). Automatic modularization by speciation. In Proceedings
of the Third IEEE International Conference on Evolutionary Computation, pp. 88–93.
IEEE Press.

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection. London: John
Murry.

Das, R. and D. Whitley (1991). The only challenging problems are deceptive: Global
search by solving order-1 hyperplanes. In R. K. Belew and L. B. Booker (Eds.), Pro-
ceedings of the Fourth International Conference on Genetic Algorithms, pp. 166–173.
Morgan Kaufmann.

Davidor, Y. (1991). A naturally occuring niche & species phenomenon: The model and
first results. In R. K. Belew and L. B. Booker (Eds.), Proceedings of the Fourth
International Conference on Genetic Algorithms, pp. 257–263. Morgan Kaufmann.

Deb, K. and D. E. Goldberg (1989). An investigation of niche and species formation
in genetic function optimization. In J. D. Schaffer (Ed.), Proceedings of the Third
International Conference on Genetic Algorithms, pp. 42–50. Morgan Kaufmann.

deGaris, H. (1990). Building artificial nervous systems using genetically programmed neu-
ral network modules. In B. Porter and R. Mooney (Eds.), Proceedings of the Seventh
International Conference on Machine Learning, pp. 132–139. Morgan Kaufmann.

deGaris, H. (1996). “CAM-Brain” ATR’s billion neuron artificial brain project. In R. S.
Michalski and J. Wnek (Eds.), Proceedings of the Third International Workshop on
Multistrategy Learning, pp. 251–269. AAAI Press.

De Jong, K. A. (1975). Analysis of Behavior of a Class of Genetic Adaptive Systems. Ph.
D. thesis, University of Michigan, Ann Arbor, MI.

De Jong, K. A. (1990). Genetic-algorithm-based learning. In Y. Kodratoff and R. S.
Michalski (Eds.), Machine Learning, Volume 3, pp. 611–638. Morgan Kaufmann.

De Jong, K. A. (1993). Genetic algorithms are not function optimizers. In L. D. Whitley
(Ed.), Foundations of Genetic Algorithms 2, pp. 5–17. Morgan Kaufmann.

De Jong, K. A., W. M. Spears, and D. F. Gordon (1993). Using genetic algorithms for
concept learning. Machine Learning 13 (2/3), 5–188.

Dixon, L. C. W. (1974). Nonlinear optimization: A survey of the state of the art. In D. J.
Evans (Ed.), Software for Numerical Mathematics, pp. 193–216. Academic Press.

122

Doorenbos, R. B. (1994). Combining left and right unlinking for matching a large num-
ber of learned rules. In Proceedings of the Twelfth National Conference on Artificial
Intelligence, Volume 1, pp. 451–458. AAAI Press/The MIT Press.

Edwards, S. F. and P. W. Anderson (1975). Theory of spin glasses. Journal of Physics 5,
965–974.

Fahlman, S. E. (1988). An empirical study of learning speed in back-propagation net-
works. Technical Report CMU-CS-88-162, Carnegie Mellon University.

Fahlman, S. E. and C. Lebiere (1990). The cascade-correlation learning architecture.
Technical Report CMU-CS-90-100, Carnegie Mellon University.

Farmer, J. D. (1991). A rosetta stone for connectionism. In S. Forrest (Ed.), Emergent
Computation, pp. 153–187. The MIT Press.

Farmer, J. D., N. H. Packard, and A. S. Perelson (1986). The immune system, adaptation
and machine learning. Physica D 22, 187–204.

Fitzpatrick, J. M. and J. J. Grefenstette (1988). Genetic algorithms in noisy envoron-
ments. Machine Learning 3, 101–120.

Fogel, L. J., A. J. Owens, and M. J. Walsh (1966). Artificial Intelligence Through Simu-
lated Evolution. John Wiley & Sons.

Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19 (2), 17–37.

Forrest, S., B. Javornik, R. E. Smith, and A. S. Perelson (1993). Using genetic algorithms
to explore pattern recognition in the immune system. Evolutionary Computation 1 (3),
191–211.

Forrest, S. and A. S. Perelson (1990). Genetic algorithms and the immune system. In H.-
P. Schwefel and R. Männer (Eds.), Parallel Problem Solving from Nature, pp. 320–325.
Springer-Verlag.

Friedman, M. and L. S. Savage (1947). Planning experiments seeking maxima. In C. Eisen-
hart, M. W. Hastay, and W. A. Wallis (Eds.), Selected Techniques of Statistical Anal-
ysis for Scientific and Industrial Research, and Production and Management Engi-
neering, pp. 363–372. New York: McGraw-Hill Book Co.

Fujiki, C. and J. Dickinson (1987). Using the genetic algorithm to generate lisp source
code to solve the prisoner’s dilemma. In J. J. Grefenstette (Ed.), Proceedings of the
Second International Conference on Genetic Algorithms, pp. 236–240. Lawrence Erl-
baum Associates.

Giordana, A. and F. Neri (1996). Search-intensive concept induction. Evolutionary Com-
putation 3 (4), 375–416.

Giordana, A., L. Saitta, and F. Zini (1994). Learning disjunctive concepts by means of
genetic algorithms. In W. Cohen and H. Hirsh (Eds.), Proceedings of the Eleventh
International Conference on Machine Learning, pp. 96–104. Morgan Kaufmann.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley.

123

Goldberg, D. E., B. Korb, and K. Deb (1989). Messy genetic algorithms: Motivation,
analysis, and first results. Complex Systems 3 (5), 493–530.

Goldberg, D. E. and J. Richardson (1987). Genetic algorithms with sharing for multi-
modal function optimization. In J. J. Grefenstette (Ed.), Proceedings of the Second
International Conference on Genetic Algorithms, pp. 41–49. Lawrence Erlbaum As-
sociates.

Goldberg, D. E. and R. E. Smith (1987). Nonstationary function optimization using ge-
netic algorithms with dominance and diploidy. In J. J. Grefenstette (Ed.), Proceedings
of the Second International Conference on Genetic Algorithms, pp. 59–68. Lawrence
Erlbaum Associates.

Gordon, V. S. and D. Whitley (1993). Serial and parallel genetic algorithms as function
optimizers. In S. Forrest (Ed.), Proceedings of the Fifth International Conference on
Genetic Algorithms, pp. 177–183. Morgan Kaufmann.

Gorges-Schleuter, M. (1989). ASPARAGOS an asynchronous parallel genetic optimiza-
tion strategy. In J. D. Schaffer (Ed.), Proceedings of the Third International Confer-
ence on Genetic Algorithms, pp. 422–427. Morgan Kaufmann.

Grefenstette, J. J. (1989). A system for learning control strategies with genetic algorithms.
In J. D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic
Algorithms, pp. 183–190. Morgan Kaufmann.

Grefenstette, J. J. (1992). Genetic algorithms for changing environments. In R. Männer
and B. Manderick (Eds.), Parallel Problem Solving from Nature, 2, pp. 137–144.
Elsevier Science.

Grefenstette, J. J. and J. M. Fitzpatrick (1985). Genetic search with approximate function
evaluations. In J. J. Grefenstette (Ed.), Proceedings of an International Conference
on Genetic Algorithms and Their Applications, pp. 112–120. Lawrence Erlbaum As-
sociates.

Grefenstette, J. J., C. L. Ramsey, and A. C. Schultz (1990). Learning sequential decision
rules using simulation models and competition. Machine Learning 5 (4), 355–381.

Grosso, P. B. (1985). Computer Simulations of Genetic Adaptation: Parallel Subcompo-
nent Interaction in a Multilocus Model. Ph. D. thesis, University of Michigan, Ann
Arbor, MI.

Hadley, G. (1964). Nonlinear and Dynamic Programming. Reading, Mass.: Adison-
Wesley.

Hamilton, W. D. (1982). Pathogens as causes of genetic diversity in their host. In R. M.
Anderson and R. M. May (Eds.), Population Biology of Infectious Diseases, pp. 269–
296. Springer-Verlag.

Hicklin, J. F. (1986). Application of the genetic algorithm to automatic program gener-
ation. Master’s thesis, Department of Computer Science, University of Idaho.

Hillis, D. W. (1991). Co-evolving parasites improve simulated evolution as an optimization
procedure. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen (Eds.),

124

Artificial Life II, SFI Studies in the Sciences of Complexity, Volume 10, pp. 313–324.
Addison-Wesley.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michi-
gan Press.

Holland, J. H. (1986). Escaping brittleness: The possibilities of general purpose learning
algorithms applied to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell,
and T. M. Mitchell (Eds.), Machine Learning, Volume 2, pp. 593–623. Morgan Kauf-
man.

Holland, J. H. and J. S. Reitman (1978). Cognitive systems based on adaptive algorithms.
In D. A. Waterman and F. Hayes-Roth (Eds.), Pattern-Directed Inference Systems.
Academic Press.

Husbands, P. and F. Mill (1991). Simulated co-evolution as the mechanism for emergent
planning and scheduling. In R. K. Belew and L. B. Booker (Eds.), Proceedings of
the Fourth International Conference on Genetic Algorithms, pp. 264–270. Morgan
Kaufmann.

Janikow, C. Z. (1991). Inductive Learning from Attribute-Based Examples: A Knowledge-
Intensive Genetic Algorithm Approach. Ph. D. thesis, University of North Carolina at
Chapel Hill.

Janikow, C. Z. (1993). A knowledge-intensive genetic algorithm for supervised learning.
Machine Learning 13 (2/3), 189–228.

Jones, T. (1995). Evolutionary Algorithms, Fitness Landscapes, and Search. Ph. D. thesis,
University of New Mexico, Albuquerque, NM.

Karunanithi, N., R. Das, and D. Whitley (1992). Genetic cascade learning for neural
networks. In L. D. Whitley and J. D. Schaffer (Eds.), COGANN-92 International
Workshop on Combinations of Genetic Algorithms and Neural Networks, pp. 134–
145. IEEE Computer Society Press.

Kauffman, S. A. (1989). Adaptation on rugged fitness landscapes. In D. L. Stein (Ed.),
Lectures in the Sciences of Complexity, Volume 1, pp. 527–618. Addison Wesley.

Kauffman, S. A. (1993). The Origins of Order. Oxford University Press.

Kauffman, S. A. and S. Johnsen (1991). Co-evolution to the edge of chaos: Coupled
fitness landscapes, poised states, and co-evolutionary avalanches. In C. G. Langton,
C. Taylor, J. D. Farmer, and S. Rasmussen (Eds.), Artificial Life II, SFI Studies in
the Sciences of Complexity, Volume 10, pp. 325–369. Addison-Wesley.

Kettlewell, H. B. D. (1955). Selection experiments on industrial melanism in the lepi-
doptera. Heredity 9, 323–342.

Koza, J. R. (1989). Hierarchical genetic algorithms operating on populations of com-
puter programs. In N. S. Sridharan (Ed.), Eleventh International Joint Conference
on Artificial Intelligence, pp. 768–774. Morgan Kaufmann.

Koza, J. R. (1992). Genetic Programming. The MIT Press.

125

Koza, J. R. (1993). Hierarchical automatic function definition in genetic programming.
In L. D. Whitley (Ed.), Foundations of Genetic Algorithms 2, pp. 297–318. Morgan
Kaufmann.

Lack, D. L. (1947). Darwin’s Finches. Cambridge University Press.

Lang, K. J. and M. J. Witbrock (1988). Learning to tell two spirals apart. In D. Touretzky,
G. Hinton, and T. Sejnowski (Eds.), Proceedings of the 1988 Connectionist Models
Summer School, pp. 52–59. Morgan Kaufmann.

Lenat, D. B. (1995). CYC: a large-scale investment in knowledge infrastructure. Com-
munications of the ACM 38 (11), 33–38.

Lewis, T. G. and E.-R. Hesham (1992). Introduction to Parallel Computing. Prentice-Hall.

Lin, L.-J. (1993). Hierarchical learning of robot skills by reinforcement. In Proceedings
of the 1993 International Joint Conference on Neural Networks, pp. 181–186. IEEE
Computer Society Press.

Manderick, B. and P. Spiessens (1989). Fine-grained parallel genetic algorithms. In J. D.
Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algo-
rithms, pp. 428–433. Morgan Kaufmann.

McInerney, J. (1992). Biologically Influenced Algorithms and Parallelism in Non-linear
Optimization. Ph. D. thesis, University of California, San Diego, La Jolla, CA.

Michalski, R. S. (1983). A theory and methodology of inductive learning. In R. S. Michal-
ski, J. G. Carbonell, and T. M. Mitchell (Eds.), Machine Learning, pp. 83–134. Morgan
Kaufmann.

Michalski, R. S., I. Mozetic, J. Hong, and N. Lavrac (1986). The AQ15 inductive learn-
ing system: An overview and experiments. Technical Report UIUCDCS-R-86-1260,
University of Illinois, Urbana-Champaign, IL.

Miller, G. F., P. M. Todd, and S. U. Hegde (1989). Designing neural networks using
genetic algorithms. In J. D. Schaffer (Ed.), Proceedings of the Third International
Conference on Genetic Algorithms, pp. 379–384. Morgan Kaufmann.

Miller, R. G. (1986). Beyond ANOVA, basics of applied statistics. John Wiley & Sons.

Montana, D. J. and L. Davis (1989). Training feedforward neural networks using genetic
algorithms. In N. S. Sridharan (Ed.), Eleventh International Joint Conference on
Artificial Intelligence, pp. 762–767. Morgan Kaufmann.

Moriarty, D. E. and R. Miikkulainen (1996). Efficient reinforcement learning through
symbiotic evolution. Machine Learning 22 (1), 11–33.

Mühlenbein, H. (1989). Parallel genetic algorithms, population genetics and combina-
torial optimization. In J. D. Schaffer (Ed.), Proceedings of the Third International
Conference on Genetic Algorithms, pp. 416–421. Morgan Kaufmann.

Nash, J. (1951). Non-cooperative games. Annals of Mathematics 54 (2), 286–295.

Neri, F. and L. Saitta (1996). Exploring the power of genetic search in learning sym-
bolic classifiers. To appear in IEEE Transactions on Pattern Analysis and Machine
Intelligence.

126

Oren, S. S. (1974). On the selection of parameters in self scaling variable metric algo-
rithms. Mathematical Programming 7, 351–367.

Paredis, J. (1995). The symbiotic evolution of solutions and their representations. In
L. Eshelman (Ed.), Proceedings of the Sixth International Conference on Genetic
Algorithms, pp. 359–365. Morgan Kaufmann.

Perry, Z. (1984). Experimental Study of Speciation in Ecological Niche Theory Using
Genetic Algorithms. Ph. D. thesis, University of Michigan, Ann Arbor, MI.

Pettey, C. B., M. R. Leuze, and J. J. Grefenstette (1987). A parallel genetic algorithm.
In J. J. Grefenstette (Ed.), Proceedings of the Second International Conference on
Genetic Algorithms, pp. 155–161. Lawrence Erlbaum Associates.

Pettit, E. and K. M. Swigger (1983). An analysis of genetic-based pattern tracking and
cognitive-based component tracking models of adaptation. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI-83), pp. 327–332. William Kauf-
mann, Inc.

Potter, M. A. (1992). A genetic cascade-correlation learning algorithm. In L. D. Whitley
and J. D. Schaffer (Eds.), COGANN-92 International Workshop on Combinations
of Genetic Algorithms and Neural Networks, pp. 123–133. IEEE Computer Society
Press.

Potter, M. A. and K. A. De Jong (1994). A cooperative coevolutionary approach to func-
tion optimization. In Y. Davidor and H.-P. Schwefel (Eds.), Proceedings of the Third
Conference on Parallel Problem Solving from Nature, pp. 249–257. Springer-Verlag.

Potter, M. A. and K. A. De Jong (1995). Evolving neural networks with collaborative
species. In T. I. Ören and L. G. Birta (Eds.), Proceedings of the 1995 Summer Com-
puter Simulation Conference, pp. 340–345. The Society for Computer Simulation.

Potter, M. A., K. A. De Jong, and J. J. Grefenstette (1995). A coevolutionary approach
to learning sequential decision rules. In L. Eshelman (Ed.), Proceedings of the Sixth
International Conference on Genetic Algorithms, pp. 366–372. Morgan Kaufmann.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning 1, 81–106.

Rastrigin, L. A. (1974). Extremal Control Systems. Moscow: Nauka. Theoretical Foun-
dations of Engineering Cybernetics Series (in Russian).

Rechenberg, I. (1964). Cybernetic solution path of an experimental problem. Library
Translation 1122, August 1965. Farnborough Hants: Royal Aircraft Establishment.
English translation of lecture given at the Annual Conference of the WGLR at Berlin
in September, 1964.

Rechenberg, I. (1973). Evolutionsstrategie—Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Stuttgart-Bad Cannstatt: Frommann-
Holzboog.

Roitt, I. M. (1994). Essential Immunology (Eighth ed.). Blackwell Scientific Publications.

Rosca, J. P. and D. H. Ballard (1994). Hierarchical self-organization in genetic program-
ming. In W. Cohen and H. Hirsh (Eds.), Proceedings of the Eleventh International
Conference on Machine Learning, pp. 251–258. Morgan Kaufmann.

127

Rosca, J. P. and D. H. Ballard (1996). Discovery of subroutines in genetic program-
ming. In P. Angeline and K. E. Kinnear (Eds.), Advances in Genetic Programming 2,
Chapter 9. The MIT Press.

Rosenbrock, H. H. (1960). An automatic method for finding the greatest or least value
of a function. Computer Journal 3, 175–184.

Rosin, C. D. and R. K. Belew (1995). Methods for competitive co-evolution: Finding
opponents worth beating. In L. Eshelman (Ed.), Proceedings of the Sixth International
Conference on Genetic Algorithms, pp. 373–380. Morgan Kaufmann.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning internal representa-
tions by error propagation. In D. E. Rumelhart and J. L. McClelland (Eds.), Parallel
Distributed Processing: Explorations in the Microstructures of Cognition, Volume 1,
pp. 318–362. The MIT Press.

Salomon, R. (1996). Reevaluating genetic algorithm performance under coordinate rota-
tion of benchmark functions. BioSystems 39, 263–278.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development 3 (3), 210–229.

Schaffer, J. D., D. Whitley, and L. J. Eshelman (1992). Combinations of genetic al-
gorithms and neural networks: A survey of the state of the art. In L. D. Whitley
and J. D. Schaffer (Eds.), COGANN-92 International Workshop on Combinations of
Genetic Algorithms and Neural Networks, pp. 1–37. IEEE Computer Society Press.

Schlimmer, J. C. (1987). Concept Acquisition through Representational Adjustment. Ph.
D. thesis, University of California, Irvine, CA.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. John Wiley & Sons.
English translation of Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie, 1977.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. John Wiley & Sons.

Singh, S. P. (1992). Transfer of learning by composing solutions of elemental sequential
tasks. Machine Learning 8, 323–339.

Skinner, B. F. (1938). The Behavior of Organisms: An Experimental Analysis. D.
Appleton-Century, New York.

Smith, J. M. (1989). Evolutionary Genetics. Oxford University Press.

Smith, R. E., S. Forrest, and A. S. Perelson (1993). Searching for diverse, cooperative
populations with genetic algorithms. Evolutionary Computation 1 (2), 127–149.

Smith, S. F. (1983). Flexible learning of problem solving heuristics through adaptive
search. In A. Bundy (Ed.), Proceedings of the Eighth International Joint Conference
on Artificial Intelligence, pp. 422–425. William Kaufmann.

Southwell, R. V. (1946). Relaxation Methods in Theoretical Physics. Oxford UK: Claren-
don Press.

Spears, W. M. (1994). Simple subpopulation schemes. In A. V. Sebald and D. B. Fogel
(Eds.), Proceedings of the Third Conference on Evolutionary Programming, pp. 297–
307. World Scientific.

128

Spedicato, E. (1975). Computational experience with quasi-Newton algorithms for min-
imization problems of moderately large size. Technical Report CISE-N-175, Centro
Informazioni Studi Esperienze, Segrate (Milano), Italy.

Spiessens, P. and B. Manderick (1991). A massively parallel genetic algorithm imple-
mentation and first analysis. In R. K. Belew and L. B. Booker (Eds.), Proceedings
of the Fourth International Conference on Genetic Algorithms, pp. 279–286. Morgan
Kaufmann.

Spofford, J. J. and K. J. Hintz (1991). Evolving sequential machines in amorphous neural
netrorks. In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas (Eds.), Artificial
Neural Networks, pp. 973–978. Elsevier Science.

Stadnyk, I. (1987). Schema recombination in a pattern recognition problem. In J. J.
Grefenstette (Ed.), Proceedings of the Second International Conference on Genetic
Algorithms, pp. 27–35. Lawrence Erlbaum Associates.

Steele, Jr., G. L. (1990). Common Lisp the Language (Second ed.). Woburn, MA: Digital
Press.

Student (1908). The probable error of a mean. Biometrika 6, 1–25.

Suewatanakul, W. and D. M. Himmelblau (1992). Comparison of artificial neu-
ral networks and traditional classifiers via the two-spiral problem. In M. L.
Padgett (Ed.), Proceedings of the Third Workshop on Neural Networks: Aca-
demic/Industrial/NASA/Defense, pp. 275–282. Society for Computer Simulation.

Tanese, R. (1987). Parallel genetic algorithm for a hypercube. In J. J. Grefenstette (Ed.),
Proceedings of the Second International Conference on Genetic Algorithms, pp. 177–
183. Lawrence Erlbaum Associates.

Tanese, R. (1989). Distributed genetic algorithms. In J. D. Schaffer (Ed.), Proceedings
of the Third International Conference on Genetic Algorithms, pp. 434–439. Morgan
Kaufmann.

Thrun, S. B., J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. De Jong,
S. Džeroski, S. E. Fahlman, D. Fisher, R. Hamann, K. Kaufman, S. Keller,
I. Kononenko, J. Kreuziger, R. S. Michalski, T. Mitchell, P. Pachowicz, Y. Reich,
H. Vafaie, W. Van deWelde, W. Wenzel, J. Wnek, and J. Zhang (1991). The MONK’s
problems—a performance comparison of different learning algorithms. Technical Re-
port CMU-CS-91-197, Carnegie Mellon University.

Turner, J. R. G. (1977). Butterfly mimicay: the genetical evolution of an adaption.
Evolutionary Biology 10, 163–206.

Van Valen, L. (1973). A new evolutionary law. Evolutionary Theory 1, 1–30.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Ph. D. thesis, University
of Cambridge, England.

Watkins, C. J. C. H. and P. Dayan (1992). Q-learning. Machine Learning 8, 279–292.

Weiss, S. M. and C. A. Kulikowski (1991). Computer Systems that Learn. Morgan Kauf-
mann.

129

Whitley, D. and N. Karunanithi (1991). Generalization in feed forward neural networks.
In Proceedings of the International Joint Conference on Neural Networks – Seattle,
Volume 2, pp. 77–82. IEEE.

Whitley, D., K. Mathias, S. Rana, and J. Dzubera (1995). Building better test functions.
In L. Eshelman (Ed.), Proceedings of the Sixth International Conference on Genetic
Algorithms, pp. 239–246. Morgan Kaufmann.

Whitley, D. and T. Starkweather (1990). Genitor II: a distributed genetic algorithm.
Journal of Experimental and Theoretical Artificial Intelligence 2, 189–214.

Whitley, D., T. Starkweather, and C. Bogart (1990). Genetic algorithms and neural
networks: Optimizing connections and connectivity. Parallel Computing 14, 347–361.

Wolpert, D. H. and W. G. Macready (1995). No free-lunch theorems for search. Technical
Report 95-02-010, Santa Fe Institute.

Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evo-
lution. In D. F. Jones (Ed.), Proceedings of the Sixth International Conference of
Genetics, pp. 356–366. Brooklyn Botanic Garden.

130

APPENDICES

131

Appendix A

PROGRAM CODE FOR COOPERATIVE COEVOLUTION

MODEL

All the programs used in the experimental studies discussed in this dissertation were written
in the computer language Common Lisp (Steele 1990). To enable the reader to resolve any
ambiguities in the description of our computational model of cooperation coevolution, we
document in this appendix Lisp code that completely implements the example from the final
section of chapter 3. The underlying evolutionary algorithm used in this implementation is
a genetic algorithm.

Recall from the end of chapter 3 that the coevolutionary model is used to solve a string
covering problem in which we are given a set of binary strings with the goal of finding
the best possible set of matching strings. These sets are called the target set and the
match set respectively. The number of elements in the match set is equal to the number
of species being evolved; that is, each species contributes a single match set element. To
make the problem more interesting, we evolve fewer species than strings in the target set
so that good solutions are required to contain generalizations rather than simply clones of
the target strings. For more background information on the string covering problem and
our implementation, see the explanation in section 3.4 beginning on page 39.

Auxiliary Files

Two auxiliary files are required by this Common Lisp implementation. The first auxiliary file
is called “targets” and contains the elements of the target set. Each element is represented
as a Common Lisp bit vector. The file used in the experiment described in chapter 3
contained the following 32-bit vectors:

#*00000000000000000000000000000000

#*00010001000100010001000100010001

#*00110011001100110011001100110011

#*01000100010001000100010001000100

#*01010101010101010101010101010101

#*10001000100010001000100010001000

The second auxiliary file is called “randomstates” and contains precomputed Common Lisp
random state objects. These objects are used by the Common Lisp pseudo-random number
generator to encapsulate state information. By precomputing random state objects using
the Common Lisp function (make-random-state), saving them to a file, and using them

132

133

to initialize the random number generator at the beginning of each experiment, one can
execute a series of stochastic runs that are repeatable.

Parameters

The operation of the coevolutionary model can be modified by adjusting the following
parameters:

(defparameter *maxgen* 100

"Maximum number of generations to evolve")

(defparameter *goal* 32.0

"Fitness that will be considered a success and halt evolution")

(defparameter *popsize* 50

"Size of the population (must be an even number)")

(defparameter *chrom-length* 32

"Number of bits in a chromosome")

(defparameter *initial-species* 3

"The number of species that initially exist")

(defparameter *xover-type* :TWOPT

"The crossover type (either :TWOPT or :UNIFORM)")

(defparameter *crossprob* 0.6

"Probability of crossover")

(defparameter *mutateprob* (/ 1.0 *chrom-length*)

"Probability of mutation")

Global Variables

All the global variables used in the model of cooperative coevolution are documented below.

(defvar *gen* 0

"The current generation number")

(defvar *ecosystem-gen* 0

"The number of completed evolutionary cycles through all species")

(defvar *experiment* 1

"The current experiment number")

(defvar *species* nil

"A list of species record structures")

(defvar *current-species* nil

"The species currently being evolved")

134

(defvar *last-species-id* 0

"The identification number of the last species created")

(defvar *newpop* nil

"A new population of genotypes created from current population")

(defvar *best-individual* .0

"Index of the best individual in the current population")

(defvar *best-fitness* .0

"Fitness of the best individual in the current population")

(defvar *worst-fitness* .0

"Fitness of the worst individual in the current population")

(defvar *average-fitness* .0

"Average fitness of all individuals in current population")

(defvar *seed* 1

"Index into a file of random states")

(defvar *target-set* nil

"A list of binary target strings")

Record Structure Definitions

The following record structure represents a species:

(defstruct species

(id (incf *last-species-id*))

(genotypes (make-array *popsize* :element-type ’bit-vector))

(fitnesses (make-array *popsize* :element-type ’float))

(best-fitness 0.0)

(rep nil))

Top Level Routine

Following is the function implementing the top level control loop for the coevolutionary
model. This is the function that is executed by the user to start the coevolutionary process.
The function takes two arguments. The first argument, experiments, specifies the number
of experiments that should be run; and the second argument, seed, is an index into a file of
precomputed random state objects used to initialize the pseudo-random number generator
as previously described in the section on auxiliary files. If multiple experiments are run, the
first experiment will use the random state object indexed by seed, the second experiment
will use the random state object indexed by seed + 1, and so on. For example, if 20
experiments had previously been run using the default seed of 1 and the user then wanted
to repeat just the eighth and ninth experiments, the Lisp form (run-coevolution 2 8)

would be executed.

135

(defun run-coevolution (&optional (experiments 1) (seed 1))

"Execute the model of cooperative coevolution"

;;

;; Initialize the coevolutionary model

;;

(setq *seed* seed

experiment 1)

(init-model)

;;

;; Top level control loop

;;

(loop

(block ecosystem-gen

(dolist (*current-species* *species*)

(when (or (>= *gen* *maxgen*)

(>= *best-fitness* *goal*))

;;

;; Experiment complete

;;

(dump-reps)

(cond ((< *experiment* experiments)

;;

;; Start up the next experiment

;;

(incf *experiment*)

(init-model)

(return-from ecosystem-gen))

(t

;;

;; HALT - no more experiments

;;

(return-from run-coevolution))))

;;

;; Evolve the current species for one generation

;;

(evolve-species))

(incf *ecosystem-gen*))))

Initialization Routines

Initialization of the coevolutionary model is handled by two routines. The first of these
routines, init-model, is executed at the beginning of each experiment, and the second,
init-species, is executed each time a new species needs to be created.

(defun init-model ()

"Initialize the coevolutionary model for a new experiment"

(setq *gen* 0

ecosystem-gen 0

species nil

last-species-id -1

136

newpop (make-array *popsize* :element-type ’bit-vector)

target-set nil)

;;

;; Initialize pseudo-random number generator

;;

(let (randomState)

(with-open-file (ifile "randomstates" :direction :input)

(dotimes (i *seed*)

(setq randomState (read ifile nil nil))))

(if (random-state-p randomState)

(setq *random-state* randomState)

;;

;; Fatal error --- bad random state

;;

(error "Bad random state read from file: randomstates"))

(incf *seed*))

;;

;; Read in the target set

;;

(with-open-file (ifile "targets" :direction :input)

(let (target)

(loop

(if (setq target (read ifile nil nil))

(setq *target-set* (cons target *target-set*))

(return)))))

(setq *target-set* (reverse *target-set*))

;;

;; Initialize species

;;

(dotimes (i *initial-species*)

(init-species)))

(defun init-species ()

"Create and initialize a new species"

(setq *current-species* (make-species))

(setq *species* (nconc *species* (list *current-species*)))

(let ((genotypes (species-genotypes *current-species*))

chromosome)

;;

;; Randomly initialize the population

;;

(dotimes (i *popsize*)

(setq chromosome (make-array *chrom-length* :element-type ’bit))

(dotimes (j *chrom-length*)

(setf (aref chromosome j) (random 2)))

(setf (aref genotypes i) chromosome)))

(compute-fitness)

(dump-info)

(scale-fitness)

(incf *gen*))

137

Evolutionary Cycle

The following routine implements the select, recombine, evaluate, and replace cycle of a
single species. Each pass through this cycle is referred to as a generation. Given that this
is a sequential implementation, each species is evolved in turn by the routine documented
here. When a species is being actively evolved, it is designated the “current species”. In
contrast, a parallel implementation would evolve all the species simultaneously and there
would be no notion of a current species.

(defun evolve-species ()

"Evolve the current species for a single generation"

(do ((i 0 (+ i 2))

parent1

parent2)

((= i *popsize*))

;;

;; Select two individuals to reproduce based on fitness

;;

(setq parent1 (select-parent)

parent2 (select-parent))

;;

;; Create offspring through crossover or cloning and

;; add them to new population

;;

(multiple-value-bind (child1 child2)

(recombination parent1 parent2)

(setf (aref *newpop* i) child1

(aref *newpop* (1+ i)) child2)))

;;

;; Mutate the new population if required

;;

(unless (= *mutateprob* 0.0)

(mutate))

;;

;; Copy the best individual from the previous generation into

;; the new population without modification (elitist strategy)

;;

(setf (aref *newpop* 0)

(copy-seq (species-rep *current-species*)))

;;

;; Replace the old population with the new population

;;

(psetf (species-genotypes *current-species*) *newpop*

newpop (species-genotypes *current-species*))

;;

;; Update the fitnesses and report the status

;;

(compute-fitness)

(dump-info)

(scale-fitness)

(incf *gen*))

138

Selection

The following routine implements fitness proportionate selection. The algorithm behind
this routine samples individuals uniformly from the population but only accepts them with
probability fi/fmax. This is equivalent, yet usually more efficient in practice, than sampling
directly from a fitness proportionate distribution. Specifically, it will only be less efficient
when the population contains a small number of individuals with fitness values well above
the others.

(defun select-parent ()

"Select individual from the old population based on fitness"

(let ((fitnesses (species-fitnesses *current-species*))

(best-fitness (species-best-fitness *current-species*)))

(do ((sample-index (random *popsize*) (random *popsize*)))

((<= (random 1.0) (/ (aref fitnesses sample-index)

best-fitness))

(aref (species-genotypes *current-species*)

sample-index)))))

Genetic Operators

We implement four genetic operators: cloning, two-point crossover, uniform crossover, and
bit-flipping mutation. The two crossover operators and cloning are implemented in the rou-
tine recombination. Cloning occurs implicitly if neither crossover operator is performed.
The mutation operator is implemented in the routine mutate and uses a geometric distri-
bution to determine which bit in the population to mutate next. That is, the mutation
operator treats the entire population of binary genotypes as one long sequence of ones and
zeros.

(defun recombination (parent1 parent2)

"Create two children through crossover or cloning"

(let ((chrom1 (copy-seq parent1))

(chrom2 (copy-seq parent2))

cut1

cut2)

(when (<= (random 1.0) *crossprob*)

(cond ((eq *xover-type* :TWOPT)

;;

;; Two-point crossover

;;

(setq cut1 (random *chrom-length*)

cut2 (+ 1 cut1 (random (- *chrom-length* cut1))))

(psetf

(subseq chrom1 cut1 cut2) (subseq chrom2 cut1 cut2)

(subseq chrom2 cut1 cut2) (subseq chrom1 cut1 cut2)))

(t

;;

;; Uniform crossover

;;

139

(dotimes (i *chrom-length*)

(when (<= (random 1.0) 0.5)

(psetf (aref chrom1 i) (aref chrom2 i)

(aref chrom2 i) (aref chrom1 i)))))))

(values chrom1 chrom2)))

(defun mutate ()

"Mutate the new population"

(let ((locus 0)

i

j)

(loop

(setq locus (+ locus (floor (/ (log (random 1.0))

(log (- 1 *mutateprob*)))))

i (truncate (/ locus *chrom-length*))

j (mod locus *chrom-length*))

(when (>= i *popsize*)

(return))

(setf (aref (aref *newpop* i) j)

(if (zerop (aref (aref *newpop* i) j))

1

0)))))

Fitness Computation

Three functions are used in this implementation to evaluate the fitness of individuals. The
first function, compute-fitness, implements the control loop for computing the fitness of
every individual in the current species. It is also where the species representative is chosen.
Although compute-fitness is problem-independent, the other two functions in the suite
are specific to the string covering problem. The second function, fitness, evaluates a single
individual based on how well it collaborates with the representatives from the other species
to cover the target set. The third function, match-strength, simply compares a vector
from the match set and a vector from the target set, and returns the number of bits in the
same position with the same value.

(defun compute-fitness ()

"Compute the fitness of all individuals in the current species"

(let ((total-fitness 0.0)

(fitnesses (species-fitnesses *current-species*))

(genotypes (species-genotypes *current-species*))

current-fitness)

(setq *best-fitness* most-negative-single-float

worst-fitness most-positive-single-float)

;;

;; Loop through all individuals and compute their fitness

;;

(dotimes (i *popsize*)

(setq current-fitness (fitness (aref genotypes i)))

(setf (aref fitnesses i) current-fitness)

(incf total-fitness current-fitness)

140

(when (> current-fitness *best-fitness*)

(setq *best-fitness* current-fitness

best-individual i))

(when (< current-fitness *worst-fitness*)

(setq *worst-fitness* current-fitness)))

(setq *average-fitness* (/ total-fitness *popsize*))

;;

;; Update the current species representative

;;

(setf (species-rep *current-species*)

(copy-seq (aref genotypes *best-individual*)))))

(defun fitness (individual)

"Return the fitness of an individual"

(let (max-strength

(strength 0))

(dolist (target *target-set*)

;;

;; Find the best match between target string and members of

;; collaboration

;;

(setq max-strength 0)

(dolist (s *species*)

(setq max-strength

(max max-strength

(if (= (species-id s)

(species-id *current-species*))

(match-strength individual target)

(match-strength (species-rep s) target)))))

(incf strength max-strength))

;;

;; Return the average of the best matches

;;

(/ (float strength) (length *target-set*))))

(defun match-strength (vec1 vec2)

"Return the similarity between vec1 and vec2"

(let ((score 0))

(dotimes (k *chrom-length*)

(when (= (aref vec1 k) (aref vec2 k))

(incf score)))

score))

Fitness Scaling

The following function implements balanced linear scaling. In this novel fitness scaling
algorithm, the fitness of the average individual will be set to 1.0, the fitness of better than
average individuals will be linearly scaled from 1.0 to 2.0, and the fitness of worse than
average individuals will be linearly scaled from 0.0 to 1.0.

141

(defun scale-fitness ()

"Scale the fitness of all individuals in the population"

(let ((fitnesses (species-fitnesses *current-species*)))

(cond ((< (- *best-fitness* *worst-fitness*) 0.0001)

;;

;; All individuals in the population have close to the same

;; fitness, so give everyone an equal chance of selection

;;

(dotimes (i *popsize*)

(setf (aref fitnesses i) 1.0)))

(t

;;

;; Scale all fitness values using balanced linear scaling

;;

(let ((m1 (/ 1 (- *best-fitness* *average-fitness*)))

(b1 (- 1 (/ *average-fitness*

(- *best-fitness* *average-fitness*))))

(m2 (/ 1 (- *average-fitness* *worst-fitness*)))

(b2 (- 1 (/ *average-fitness*

(- *average-fitness* *worst-fitness*)))))

(dotimes (i *popsize*)

(cond ((>= (aref fitnesses i) *average-fitness*)

;;

;; This individual is average or above average

;;

(setf (aref fitnesses i)

(+ (* m1 (aref fitnesses i)) b1)))

(t

;;

;; This individual is below average

;;

(setf (aref fitnesses i)

(+ (* m2 (aref fitnesses i)) b2))))))))

;;

;; Update best fitness of species

;;

(setf (species-best-fitness *current-species*)

(aref fitnesses *best-individual*))))

Monitoring Routines

A suite of three routines is used to monitor the progress of the coevolutionary model. The
function dump-info outputs some initial information about parameter settings and then
proceeds to output the status of the evolutionary process at the end of each generation.
The function dump-reps outputs the representatives of each species, that is, the best match
set evolved so far. Finally, the routine contributions determines the percentage each
species contributed to a collaboration. As discussed in chapter 3, the credit assignment
information computed by contributions is not used by the coevolutionary process but
was required to generate figure 3.6 on page 42.

142

(defun dump-info ()

"Dump information about current evolutionary status to stdout"

(when (zerop *gen*)

;;

;; Output info about the parameters used in this experiment

;;

(format t "STRING MATCHING PROBLEM: ")

(multiple-value-bind (sec min hour day month year)

(get-decoded-time)

(format t " ~3S ~1D, ~4D ~2,’0D:~2,’0D:~2,’0D~%~%"

(nth (1- month) ’(Jan Feb Mar Apr May Jun Jul

Aug Sep Oct Nov Dec))

day year hour min sec))

(format t "Seed: ~10D~%" (1- *seed*))

(format t "Species: ~10D~%" *initial-species*)

(format t "Max Gen: ~10D~%" *maxgen*)

(format t "Pop Size: ~10D~%" *popsize*)

(format t "Chrom Length: ~10D~%" *chrom-length*)

(format t "Xover Prob: ~10,4F~%" *crossprob*)

(format t "Mutation Prob: ~10,4F~%" *mutateprob*)

(format t "Xover Type: ~10@A~2%" *xover-type*))

;;

;; Output info about the current generation

;;

(format t "Gen: ~4D Species: ~2D Best: ~,2F Avg: ~,2F"

gen (species-id *current-species*)

best-fitness *average-fitness*)

;;

;; Output the contribution of each species

;;

(let ((contribs (contributions))

(index 0))

(dolist (s *species*)

(format t " C~1D: ~,2F"

(species-id s) (/ (nth index contribs) *best-fitness*))

(incf index)))

(terpri))

(defun dump-reps ()

"Dump species representatives to stdout"

(terpri)

(dolist (s *species*)

(format t "Species~1D: " (species-id s))

(dotimes (j *chrom-length*)

(format t "~1D" (aref (species-rep s) j)))

(terpri)))

(defun contributions ()

"Compute percentage contribution of each species"

(let (max-strength

strength

143

winners

index

(contribs (make-list (length *species*)

:initial-element 0.0)))

(dolist (target *target-set*)

;;

;; Find out which species matched target string best and add

;; match strength to its contribution. Break ties randomly.

;;

(setq max-strength -1

index 0)

(dolist (s *species*)

(setq strength (match-strength (species-rep s) target))

(cond ((> strength max-strength)

(setq winners (list index)

max-strength strength))

((= strength max-strength)

(setq winners (cons index winners))))

(incf index))

(incf (nth (nth (random (length winners)) winners) contribs)

(* 100 (/ (float max-strength) (length *target-set*)))))

;;

;; Return list of contributions in the form of percentages

;;

contribs))

Appendix B

PARAMETER OPTIMIZATION PROBLEMS

This appendix contains plots of two-dimensional versions of all the real-valued parameter
optimization problems from chapter 4. In this appendix, the functions have all been inverted
to provide a better view of the fitness landscape in the vicinity of the global minimum.

Ackley Function

This function was originally proposed by Ackley (1987) and later generalized by Bäck and
Schwefel (1993). At a low resolution the landscape of the Ackley function is unimodal;
however, the second exponential term covers the landscape with a lattice of many small
peaks and basins.

Objective function:

f(~x) = −20 exp

−0.2

√

√

√

√

1

n

n
∑

i=1

x2
i

− exp

(

1

n

n
∑

i=1

cos (2πxi)

)

+ 20 + e

Constraints: −30.0 ≤ xi ≤ 30.0

Minimum: ~x = (0, 0, · · ·), f(~x) = 0.0

Rastrigin Function

This is a generalized version of a function proposed by Rastrigin (1974). The function is
predominantly unimodal with an overlying lattice of moderate sized peaks and basins.

Objective function:

f(~x) = nA +
n
∑

i=1

x2
i −A cos(2πxi)

Constraints: A = 3, −5.12 ≤ xi ≤ 5.12

Minimum: ~x = (0, 0, · · ·), f(~x) = 0.0

144

145

-20

0

20

-20

0

20

-20

-15

-10

-5

0

-20

0

20

-20

0

20

-20

-15

-10

-5

0

Figure B.1: Inverted Ackley function

146

-5

-2.5

0

2.5

5 -5

-2.5

0

2.5

5

-60

-40

-20

0

-5

-2.5

0

2.5

5 -5

-2.5

0

2.5

5

-60

-40

-20

0

Figure B.2: Inverted Rastrigin function

147

Schwefel Function

The landscape of the Schwefel function (Schwefel 1981) is covered with a lattice of large
peaks and basins. The predominant characteristic of the function is the presence of a
second-best minimum far away from the global minimum—intended to trap optimization
algorithms on a suboptimal peak. The best minimums are near the corners of the space.
We have added the term 418.9829n to the Schwefel function so its global minimum will be
zero, regardless of dimensionality.

Objective function:

f(~x) = 418.9829n +
n
∑

i=1

xi sin

(

√

|xi|

)

Constraints: −500.0 ≤ xi ≤ 500.0

Minimum: ~x = (−420.9687,−420.9687, · · ·), f(~x) = 0.0

-400
-200

0

200

400
-400

-200

0

200

400

-1500

-1000

-500

0

-400
-200

0

200

400
-400

-200

0

200

400

-1500

-1000

-500

0

Figure B.3: Inverted Schwefel function

148

Rosenbrock Function

Rosenbrock (1960) proposed a function of two variables that is characterized by an extremely
deep valley whose floor forms a parabola x2

1 = x2 that leads to the global minimum. Given
the nonlinear shape of the valley floor, a simple rotation of the axes does not make the
problem significantly easier. The extended version of this function described here was
proposed by Spedicato (1975). Similar versions were proposed by Oren (1974) and Dixon
(1974).

Objective function:

f(~x) =

n/2
∑

i=1

[

100(x2i − x2
2i−1)

2 + (1− x2i−1)
2
]

Constraints: −2.048 ≤ xi ≤ 2.048

Minimum: ~x = (1, 1, · · ·), f(~x) = 0.0

Sphere Model

This function is a very simple quadratic with hyperspherical contours. It has been used
previously both in the development of evolution strategy theory (Rechenberg 1973) and in
the evaluation of genetic algorithms as part of the De Jong test suite (De Jong 1975).

Objective function:

f(~x) =
n
∑

i=1

x2
i

Constraints: −5.12 ≤ xi ≤ 5.12

Minimum: ~x = (0, 0, · · ·), f(~x) = 0.0

Stochastic De Jong Function

De Jong (1975) proposed a high-dimensional unimodal quadratic function with Gaussian
noise for evaluating the performance of “genetic adaptive plans”.

Objective function:

f(~x) =
n
∑

i=1

ix4
i + Gauss(0, σ)

Constraints: −1.28 ≤ xi ≤ 1.28

Minimum (without noise): ~x = (0, 0, · · ·), f(~x) = 0.0

149

-2
-1

0
1

2

-2

-1

0

1

2

-4000

-3000

-2000

-1000

0

-2
-1

0
1

2

-2

-1

0

1

2

-4000

-3000

-2000

-1000

0

Figure B.4: Inverted Rosenbrock function

150

-5

-2.5

0

2.5

5 -5

-2.5

0

2.5

5

-40

-20

0

-5

-2.5

0

2.5

5 -5

-2.5

0

2.5

5

-40

-20

0

Figure B.5: Inverted sphere model

151

-1

0

1
-1

0

1

-10

-7.5

-5

-2.5

0

-1

0

1
-1

0

1

-10

-7.5

-5

-2.5

0

Figure B.6: Inverted stochastic De Jong function (σ = 1.0)

152

-1

0

1
-1

0

1

-10

-7.5

-5

-2.5

0

-1

0

1
-1

0

1

-10

-7.5

-5

-2.5

0

Figure B.7: Inverted stochastic De Jong function with noise removed

Appendix C

PROGRAM CODE FOR COORDINATE ROTATION

ALGORITHM

In this appendix, we document Lisp code that implements Salomon’s (1996) algorithm for
coordinate rotation about multiple axes. This algorithm was used in some of the experiments
of chapter 4 to produce massively non-separable functions from separable ones.

Lisp Support for Matrices

The Common Lisp language does not include support for matrix arithmetic (Steele 1990).
The following two routines implement the multiplication of square matrices and the creation
of identity matrices—both of which are required by the Salomon algorithm. In our imple-
mentation, matrices are represented by vectors of vectors, where each sub-vector represents
a matrix row.

(defun matrix-mult (matrix1 matrix2)

"Multiply two square matrices of equal dimension"

(let ((n (array-dimension matrix1 0))

matrix3

sum)

(setq matrix3 (make-array n))

(dotimes (i n)

(setf (aref matrix3 i) (make-array n :element-type ’float)))

(dotimes (i n)

(dotimes (j n)

(setq sum 0)

(dotimes (k n)

(incf sum (* (aref (aref matrix1 i) k)

(aref (aref matrix2 k) j))))

(setf (aref (aref matrix3 i) j) sum)))

matrix3))

(defun identity-matrix (n)

"Return an n-dimensional identity matrix"

(let ((matrix (make-array n)))

(dotimes (i n)

(setf (aref matrix i) (make-array n :element-type ’float)

(aref (aref matrix i) i) 1.0))

matrix))

153

154

Transformation Matrices

The following two routines create transformation matrices for rotating the coordinate sys-
tem. The angle of rotation is random.

(defun transformation (i j n)

"Return n-dimensional transformation matrix for single rotation"

(let ((matrix (identity-matrix n))

(angle (* (- (random 1.0) 0.5) (/ pi 2))))

(setf (aref (aref matrix i) i) (cos angle)

(aref (aref matrix j) j) (cos angle)

(aref (aref matrix i) j) (sin angle)

(aref (aref matrix j) i) (- (sin angle)))

matrix))

(defun multiple-transformations (n)

"Return n-dimensional transformation matrix for multiple rotations"

(let ((matrix (identity-matrix n)))

(dotimes (i (- n 1))

(setq matrix

(matrix-mult matrix (transformation 0 (1+ i) n))))

(dotimes (i (- n 2))

(setq matrix

(matrix-mult matrix (transformation (1+ i) (1- n) n))))

matrix))

Coordinate System Rotation

The following routine randomly rotates a vector of coordinates about multiple axes. The
argument transformation-matrix is a rotation matrix previously generated by the routine
multiple-transformations documented above.

(defun rotate (transformation-matrix coordinate-vector)

"Return vector of rotated coordinates"

(let* ((n (array-dimension transformation-matrix 0))

(rotated-coordinates (make-array n :element-type ’float)))

(dotimes (i n)

(let ((sum 0.0))

(dotimes (j n)

(incf sum (* (aref (aref transformation-matrix i) j)

(aref coordinate-vector j))))

(setf (aref rotated-coordinates i) sum)))

rotated-coordinates))

